Professional Education


  • Master of Science, Leiden University (2013)
  • Doctor of Philosophy, Leiden University (2020)
  • Bachelor of Science, Universidad San Francisco De Quito (2010)
  • PhD, Leiden University, Cancer Biology
  • MSc, Leiden University, Molecular Biology
  • BSc, Universidad San Francisco de Quito, Biotechnology

Stanford Advisors


All Publications


  • Multi-omic profiling reveals the endogenous and neoplastic responses to immunotherapies in cutaneous T cell lymphoma. Cell reports. Medicine Glass, D. R., Mayer-Blackwell, K., Ramchurren, N., Parks, K. R., Duran, G. E., Wright, A. K., Bastidas Torres, A. N., Islas, L., Kim, Y. H., Fling, S. P., Khodadoust, M. S., Newell, E. W. 2024: 101527

    Abstract

    Cutaneous T cell lymphomas (CTCLs) are skin cancers with poor survival rates and limited treatments. While immunotherapies have shown some efficacy, the immunological consequences of administering immune-activating agents to CTCL patients have not been systematically characterized. We apply a suite of high-dimensional technologies to investigate the local, cellular, and systemic responses in CTCL patients receiving either mono- or combination anti-PD-1 plus interferon-gamma (IFN-γ) therapy. Neoplastic T cells display no evidence of activation after immunotherapy. IFN-γ induces muted endogenous immunological responses, while anti-PD-1 elicits broader changes, including increased abundance of CLA+CD39+ T cells. We develop an unbiased multi-omic profiling approach enabling discovery of immune modules stratifying patients. We identify an enrichment of activated regulatory CLA+CD39+ T cells in non-responders and activated cytotoxic CLA+CD39+ T cells in leukemic patients. Our results provide insights into the effects of immunotherapy in CTCL patients and a generalizable framework for multi-omic analysis of clinical trials.

    View details for DOI 10.1016/j.xcrm.2024.101527

    View details for PubMedID 38670099

  • Molecular advances in cutaneous T-cell lymphoma. Seminars in cutaneous medicine and surgery Bastidas Torres, A. N., Najidh, S., Tensen, C. P., Vermeer, M. H. 2018; 37 (1): 81-86

    Abstract

    Cutaneous T-cell lymphoma (CTCL) is a group of malignancies derived from skin-homing T cells. Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common CTCL variants. In recent years, the genetic landscape of SS/MF has been characterized using genome-wide nextgeneration sequencing approaches. These studies have revealed that genes subjected to oncogenic mutations take part in cell cycle regulation, chromatin modification, Janus kinase (JAK)-signal transducer and activator of transcription protein (STAT) signaling, T-cell receptor (TCR)/ nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, and microtubule associated protein kinase (MAPK) signaling, which suggests that deregulation of these cellular processes underlies lymphomagenesis. These studies provide the groundwork for functional and clinical studies that will lead to better risk assessment and more effective therapeutic approach in CTCL patients.

    View details for DOI 10.12788/j.sder.2018.007

    View details for PubMedID 29719024