All Publications


  • Transmon Qubit constraints on dark matter-nucleon scattering JOURNAL OF HIGH ENERGY PHYSICS Das, A., Kurinsky, N., Leane, R. K. 2024
  • Diamond and SiC Detectors for Rare Event Searches JOURNAL OF LOW TEMPERATURE PHYSICS Simchony, A., Smith, Z. J., Young, B., Brink, P., Cabrera, B., Cherry, M., Cudmore, E., Hong, Z., Kagan, H., Kenny, C., Ryan, J., Kurinsky, N. 2024
  • Improved modeling of detector response effects in phonon-based crystal detectors used for dark matter searches PHYSICAL REVIEW D Wilson, M. J., Zaytsev, A., von Krosigk, B., Alkhatib, I., Buchanan, M., Chen, R., Diamond, M. D., Figueroa-Feliciano, E., Harms, S. S., Hong, Z., Kennard, K. T., Kurinsky, N. A., Mahapatra, R., Mirabolfathi, N., Novati, V., Platt, M., Ren, R., Sattari, A., Schmidt, B., Wang, Y., Zatschler, S., Zhang, E., Zuniga, A. 2024; 109 (11)
  • First Results from a Broadband Search for Dark Photon Dark Matter in the 44 to 52  μeV Range with a Coaxial Dish Antenna. Physical review letters Knirck, S., Hoshino, G., Awida, M. H., Cancelo, G. I., Di Federico, M., Knepper, B., Lapuente, A., Littmann, M., Miller, D. W., Mitchell, D. V., Rodriguez, D., Ruschman, M. K., Sawtell, M. A., Stefanazzi, L., Sonnenschein, A., Teafoe, G. W., Bowring, D., Carosi, G., Chou, A., Chang, C. L., Dona, K., Khatiwada, R., Kurinsky, N. A., Liu, J., Pena, C., Salemi, C. P., Wang, C. W., Yu, J. 2024; 132 (13): 131004

    Abstract

    We present first results from a dark photon dark matter search in the mass range from 44 to 52  μeV (10.7-12.5 GHz) using a room-temperature dish antenna setup called GigaBREAD. Dark photon dark matter converts to ordinary photons on a cylindrical metallic emission surface with area 0.5  m^{2} and is focused by a novel parabolic reflector onto a horn antenna. Signals are read out with a low-noise receiver system. A first data taking run with 24 days of data does not show evidence for dark photon dark matter in this mass range, excluding dark photon photon mixing parameters χ≳10^{-12} in this range at 90% confidence level. This surpasses existing constraints by about 2 orders of magnitude and is the most stringent bound on dark photons in this range below 49  μeV.

    View details for DOI 10.1103/PhysRevLett.132.131004

    View details for PubMedID 38613261

  • Dark Matter Induced Power in Quantum Devices. Physical review letters Das, A., Kurinsky, N., Leane, R. K. 2024; 132 (12): 121801

    Abstract

    We point out that power measurements of single quasiparticle devices open a new avenue to detect dark matter (DM). The threshold of these devices is set by the Cooper pair binding energy, and is therefore so low that they can detect DM as light as about an MeV incoming from the Galactic halo, as well as the low-velocity thermalized DM component potentially present in the Earth. Using existing power measurements with these new devices, as well as power measurements with SuperCDMS-CPD, we set new constraints on the spin-independent DM scattering cross section for DM masses from about 10 MeV to 10 GeV. We outline future directions to improve sensitivity to both halo DM and a thermalized DM population in the Earth using power deposition in quantum devices.

    View details for DOI 10.1103/PhysRevLett.132.121801

    View details for PubMedID 38579214

  • Two-Stage Cryogenic HEMT-Based Amplifier for Low-Temperature Detectors JOURNAL OF LOW TEMPERATURE PHYSICS Anczarski, J., Dubovskov, M., Fink, C. W., Kevane, S., Kurinsky, N., Mazumdar, A., Meijer, S. J., Phipps, A., Ronning, F., Rydstrom, I., Simchony, A., Smith, Z., Thomas, S., Watkins, S. L., Young, B. 2024
  • G4CMP: Condensed matter physics simulation using the Geant4 toolkit NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT Kelsey, M. H., Agnese, R., Alam, Y. F., Langroudy, I., Azadbakht, E., Brandt, D., Bunker, R., Cabrera, B., Chang, Y., Coombes, H., Cormier, R. M., Diamond, M. D., Edwards, E. R., Figueroa-Feliciano, E., Gao, J., Harrington, P. M., Hong, Z., Hui, M., Kurinsky, N. A., Lawrence, R. E., Loer, B., Masten, M. G., Michaud, E., Michielin, E., Miller, J., Novati, V., Oblath, N. S., Orrell, J. L., Perry, W. L., Redl, P., Reynolds, T., Saab, T., Sadoulet, B., Serniak, K., Singh, J., Speaks, Z., Stanford, C., Stevens, J. R., Strube, J., Toback, D., Ullom, J. N., VanDevender, B. A., Vissers, M. R., Wilson, M. J., Wilson, J. S., Zatschler, B., Zatschler, S. 2023; 1055
  • Observation of Long-Lived UV-Induced Fluorescence from Environmental Materials Using the HVeV Detector as Developed for SuperCDMS JOURNAL OF LOW TEMPERATURE PHYSICS Ponce, F., Brink, P. L., Cabrera, B., Cherry, M., Kurinsky, N. A., Page, W. A., Partridge, R., Stanford, C., Watkins, S. L., Yellin, S., Young, B. A. 2022; 209 (5-6): 1172-1179
  • Determining Dark-Matter-Electron Scattering Rates from the Dielectric Function PHYSICAL REVIEW LETTERS Hochberg, Y., Kahn, Y., Kurinsky, N., Lehmann, B., Yu, T., Berggren, K. K. 2021; 127 (15): 151802

    Abstract

    We show that the rate for dark-matter-electron scattering in an arbitrary material is determined by an experimentally measurable quantity, the complex dielectric function, for any dark matter interaction that couples to electron density. This formulation automatically includes many-body effects, eliminates all systematic theoretical uncertainties on the electronic wave functions, and allows a direct calibration of the spectrum by electromagnetic probes such as infrared spectroscopy, x-ray scattering, and electron energy-loss spectroscopy. Our formalism applies for several common benchmark models, including spin-independent interactions through scalar and vector mediators of arbitrary mass. We discuss the consequences for standard semiconductor and superconductor targets and find that the true reach of superconductor detectors for light mediators exceeds previous estimates by several orders of magnitude, with further enhancements possible due to the low-energy tail of the plasmon. Using a heavy-fermion superconductor as an example, we show how our formulation allows a rapid and systematic investigation of novel electron scattering targets.

    View details for DOI 10.1103/PhysRevLett.127.151802

    View details for Web of Science ID 000705651600004

    View details for PubMedID 34678036

  • Correlated charge noise and relaxation errors in superconducting qubits. Nature Wilen, C. D., Abdullah, S., Kurinsky, N. A., Stanford, C., Cardani, L., D'Imperio, G., Tomei, C., Faoro, L., Ioffe, L. B., Liu, C. H., Opremcak, A., Christensen, B. G., DuBois, J. L., McDermott, R. 2021; 594 (7863): 369-373

    Abstract

    The central challenge in building a quantum computer is error correction. Unlike classical bits, which are susceptible to only one type of error, quantum bits (qubits) are susceptible to two types of error, corresponding to flips of the qubit state about the X and Zdirections. Although the Heisenberg uncertainty principle precludes simultaneous monitoring of X- and Z-flips on a single qubit, it is possible to encode quantum information in large arrays of entangled qubits that enable accurate monitoring of all errors in the system, provided that the error rate is low1. Another crucial requirement is that errors cannot be correlated. Here we characterize a superconducting multiqubit circuit and find that charge noise in the chip is highly correlated on a length scale over 600micrometres; moreover, discrete charge jumps are accompanied by a strong transient reduction of qubit energy relaxation time across the millimetre-scale chip. The resulting correlated errors are explained in terms of the charging event and phonon-mediated quasiparticle generation associated with absorption of gamma-rays and cosmic-ray muons in the qubit substrate. Robust quantum error correction will require the development of mitigation strategies to protect multiqubit arrays from correlated errors due to particle impacts.

    View details for DOI 10.1038/s41586-021-03557-5

    View details for PubMedID 34135523

  • Silicon carbide detectors for sub-GeV dark matter PHYSICAL REVIEW D Griffin, S. M., Hochberg, Y., Inzani, K., Kurinsky, N., Lin, T., Yu, T. 2021; 103 (7)
  • Diamond detectors for direct detection of sub-GeV dark matter PHYSICAL REVIEW D Kurinsky, N., Yu, T., Hochberg, Y., Cabrera, B. 2019; 99 (12)
  • Exploring the Evolution of Star Formation and Dwarf Galaxy Properties with JWST/MIRI Serendipitous Spectroscopic Surveys ASTROPHYSICAL JOURNAL Bonato, M., Sajina, A., De Zotti, G., McKinney, J., Baronchelli, I., Negrello, M., Marchesini, D., Roebuck, E., Shipley, H., Kurinsky, N., Pope, A., Noriega-Crespo, A., Yan, L., Kirkpatrick, A. 2017; 836 (2)
  • The evolution in the stellar mass of brightest cluster galaxies over the past 10 billion years MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Bellstedt, S., Lidman, C., Muzzin, A., Franx, M., Guatelli, S., Hill, A. R., Hoekstra, H., Kurinsky, N., Labbe, I., Marchesini, D., Marsan, Z. C., Safavi-Naeini, M., Sifon, C., Stefanon, M., van de Sande, J., van Dokkum, P., Weigel, C. 2016; 460 (3): 2862-2874
  • Planck intermediate results VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz ASTRONOMY & ASTROPHYSICS Ade, P. A., Aghanim, N., Argueeso, F., Arnaud, M., Ashdown, M., Atrio-Barandela, F., Aumont, J., Baccigalupi, C., Balbi, A., Banday, A. J., Barreiro, R. B., Battaner, E., Benabed, K., Benoit, A., Bernard, J., Bersanelli, M., Bethermin, M., Bhatia, R., Bonaldi, A., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Cabella, P., Cardoso, J., Catalano, A., Cayon, L., Chamballu, A., Chary, R., Chen, X., Chiang, L., Christensen, P. R., Clements, D. L., Colafrancesco, S., Colombi, S., Colombo, L. P., Coulais, A., Crill, B. P., Cuttaia, F., Danese, L., Davis, R. J., de Bernardis, P., de Gasperis, G., De Zotti, G., Delabrouille, J., Dickinson, C., Diego, J. M., Dole, H., Donzelli, S., Dore, O., Doerl, U., Douspis, M., Dupac, X., Efstathiou, G., Ensslin, T. A., Eriksen, H. K., Finelli, F., Forni, O., Fosalba, P., Frailis, M., Franceschi, E., Galeotta, S., Ganga, K., Giard, M., Giardino, G., Giraud-Heraud, Y., Gonzalez-Nuevo, J., Gorski, K. M., Gregorio, A., Gruppuso, A., Hansen, F. K., Harrison, D., Henrot-Versille, S., Hernandez-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., JAFFE, T. R., Jaffe, A. H., Jagemann, T., Jones, W. C., Juvela, M., Keihanen, E., Kisner, T. S., Kneissl, R., Knoche, J., Knox, L., Kunz, M., Kurinsky, N., Kurki-Suonio, H., Lagache, G., Lahteenmaki, A., Lamarre, J., Lasenby, A., Lawrence, C. R., Leonardi, R., Lilje, P. B., Lopez-Caniego, M., Macias-Perez, J. F., Maino, D., Mandolesi, N., Maris, M., Marshall, D. J., Martinez-Gonzalez, E., Masi, S., Massardi, M., Matarrese, S., Mazzotta, P., Melchiorri, A., Mendes, L., Mennella, A., Mitra, S., Miville-Deschenes, M., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Norgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Osborne, S., Pajot, F., Paladini, R., Paoletti, D., Partridge, B., Pasian, F., Patanchon, G., Perdereau, O., Perotto, L., Perrotta, F., Piacentini, F., Piat, M., Pierpaoli, E., Plaszczynski, S., Pointecouteau, E., Polenta, G., Ponthieu, N., Popa, L., Poutanen, T., Pratt, G. W., Prunet, S., Puget, J., Rachen, J. P., Reach, W. T., Rebolo, R., Reinecke, M., Renault, C., Ricciardi, S., Riller, T., Ristorcelli, I., Rocha, G., Rosset, C., Rowan-Robinson, M., Rubino-Martin, J. A., Rusholme, B., Sajina, A., Sandri, M., Savini, G., Scott, D., Smoot, G. F., Starck, J., Sudiwala, R., Suur-Uski, A., Sygnet, J., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Tuerler, M., Valenziano, L., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wade, L. A., Wandelt, B. D., White, M., Yvon, D., Zacchei, A., Zonca, A. 2013; 550