
Noor Al-Sayyad
Ph.D. Student in Physics, admitted Autumn 2018
All Publications
-
Dynamic basis of supercoiling-dependent DNA interrogation by Cas12a via R-loop intermediates.
Nature communications
2025; 16 (1): 2939
Abstract
The sequence specificity and programmability of DNA binding and cleavage have enabled widespread applications of CRISPR-Cas12a in genetic engineering. As an RNA-guided CRISPR endonuclease, Cas12a engages a 20-base pair (bp) DNA segment by forming a three-stranded R-loop structure in which the guide RNA hybridizes to the DNA target. Here we use single-molecule torque spectroscopy to investigate the dynamics and mechanics of R-loop formation of two widely used Cas12a orthologs at base-pair resolution. We directly observe kinetic intermediates corresponding to a ~5bp initial RNA-DNA hybridization and a ~17bp intermediate preceding R-loop completion, followed by transient DNA unwinding that extends beyond the 20 bp R-loop. The complex multistate landscape of R-loop formation is ortholog-dependent and shaped by target sequence, mismatches, and DNA supercoiling. A four-state kinetic model captures essential features of Cas12a R-loop dynamics and provides a biophysical framework for understanding Cas12a activity and specificity.
View details for DOI 10.1038/s41467-025-57703-y
View details for PubMedID 40133266
-
Rapid two-step target capture ensures efficient CRISPR-Cas9-guided genome editing
CELL PRESS. 2025: 90A
View details for Web of Science ID 001440845200016
-
Torque spectroscopy of molecular friction: From basepair stacking to Cas9
CELL PRESS. 2024: 500A
View details for Web of Science ID 001194120702826
-
Characterizing dissociative motion in time-resolved x-ray scattering from gas-phase diatomic molecules
PHYSICAL REVIEW A
2019; 100 (3)
View details for DOI 10.1103/PhysRevA.100.033413
View details for Web of Science ID 000486625200003
-
Observing Molecular Dynamics Using Frequency Resolved X-ray Scattering
IEEE. 2019
View details for Web of Science ID 000630002701308