Nora Vivanco Gonzalez
Postdoctoral Scholar, Bioengineering
Professional Education
-
Doctor of Philosophy, Stanford University, IMMUN-PHD (2022)
-
Bachelor of Science, The University of Chicago, Biological Sciences (2014)
All Publications
-
Loss-of-function mutations in Dnmt3a and Tet2 lead to accelerated atherosclerosis and concordant macrophage phenotypes.
Nature cardiovascular research
2023; 2 (9): 805-818
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is defined by the presence of a cancer-associated somatic mutation in white blood cells in the absence of overt hematological malignancy. It arises most commonly from loss-of-function mutations in the epigenetic regulators DNMT3A and TET2. CHIP predisposes to both hematological malignancies and atherosclerotic cardiovascular disease in humans. Here we demonstrate that loss of Dnmt3a in myeloid cells increased murine atherosclerosis to a similar degree as previously seen with loss of Tet2. Loss of Dnmt3a enhanced inflammation in macrophages in vitro and generated a distinct adventitial macrophage population in vivo which merges a resident macrophage profile with an inflammatory cytokine signature. These changes surprisingly phenocopy the effect of loss of Tet2. Our results identify a common pathway promoting heightened innate immune cell activation with loss of either gene, providing a biological basis for the excess atherosclerotic disease burden in carriers of these two most prevalent CHIP mutations.
View details for DOI 10.1038/s44161-023-00326-7
View details for PubMedID 39196062
View details for PubMedCentralID 8050831
-
Gestationally dependent immune organization at the maternal-fetal interface.
Cell reports
2022; 41 (7): 111651
Abstract
The immune system and placenta have a dynamic relationship across gestation to accommodate fetal growth and development. High-resolution characterization of this maternal-fetal interface is necessary to better understand the immunology of pregnancy and its complications. We developed a single-cell framework to simultaneously immuno-phenotype circulating, endovascular, and tissue-resident cells at the maternal-fetal interface throughout gestation, discriminating maternal and fetal contributions. Our data reveal distinct immune profiles across the endovascular and tissue compartments with tractable dynamics throughout gestation that respond to a systemic immune challenge in a gestationally dependent manner. We uncover a significant role for the innate immune system where phagocytes and neutrophils drive temporal organization of the placenta through remarkably diverse populations, including PD-L1+ subsets having compartmental and early gestational bias. Our approach and accompanying datasets provide a resource for additional investigations into gestational immunology and evoke a more significant role for the innate immune system in establishing the microenvironment of early pregnancy.
View details for DOI 10.1016/j.celrep.2022.111651
View details for PubMedID 36384130
-
An optimized protocol for phenotyping human granulocytes by mass cytometry.
STAR protocols
2022; 3 (2): 101280
Abstract
Granulocytes encompass diverse roles, from fighting off pathogens to regulating inflammatory processes in allergies. These roles are represented by distinct cellular phenotypes that we captured with mass cytometry (CyTOF). Our protocol enables simultaneous evaluation of human basophils, eosinophils, and neutrophils under homeostasis and upon immune activation by anti-Immunoglobulin E (anti-IgE) or interleukin-3 (IL-3). Granulocyte integrity and detection of protein markers were optimized so that rare granulocyte populations could be deeply characterized by single cell mass cytometry. For complete details on the use and execution of this protocol, please refer to Vivanco Gonzalez etal. (2020).
View details for DOI 10.1016/j.xpro.2022.101280
View details for PubMedID 35434655
-
Mass Cytometry Phenotyping of Human Granulocytes Reveals Novel Basophil Functional Heterogeneity.
iScience
2020; 23 (11): 101724
Abstract
Basophils, the rarest granulocyte, play critical roles in parasite- and allergen-induced inflammation. We applied mass cytometry (CyTOF) to simultaneously asses 44 proteins to phenotype and functionally characterize neutrophils, eosinophils, and basophils from 19 healthy donors. There was minimal heterogeneity seen in eosinophils and neutrophils, but data-driven analyses revealed four unique subpopulations within phenotypically basophilic granulocytes (PBG; CD45+HLA-DR-CD123+). Through CyTOF and fluorescence-activated cell sorting (FACS), we classified these four PBG subpopulations as (I) CD16lowFcepsilonRIhighCD244high (88.5± 1.2%), (II) CD16highFcepsilonRIhighCD244high (9.1± 0.4%), (III) CD16lowFcepsilonRIlowCD244low (2.3± 1.3), and (IV) CD16highFcepsilonRIlowCD244low (0.4± 0.1%). Prospective isolation confirmed basophilic-morphology of PBG I-III, but neutrophilic-morphology of PBG IV. Functional interrogation via IgE-crosslinking or IL-3 stimulation demonstrated that PBG I-II had significant increases in CD203c expression, whereas PBG III-IV remained unchanged compared with media-alone conditions. Thus, PBG III-IV could serve roles in non-IgE-mediated immunity. Our findings offer new perspectives in human basophil heterogeneity and the varying functional potential of these new subsets in health and disease.
View details for DOI 10.1016/j.isci.2020.101724
View details for PubMedID 33205028
-
IN-DEPTH CHARACTERIZATION OF GESTATIONAL IMMUNE DYNAMICS USING MASS CYTOMETRY
W B SAUNDERS CO LTD. 2019: E87–E88
View details for Web of Science ID 000483998500276
-
An Immune Atlas of Mid to Late Mouse Gestation.
SAGE PUBLICATIONS INC. 2019: 345A–346A
View details for Web of Science ID 000459610400837
-
Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells
NATURE BIOTECHNOLOGY
2019; 37 (3): 259-+
View details for DOI 10.1038/s41587-019-0033-2
View details for Web of Science ID 000460155900016
-
Scalable Conjugation and Characterization of Immunoglobulins with Stable Mass Isotope Reporters for Single-Cell Mass Cytometry Analysis.
Methods in molecular biology (Clifton, N.J.)
2019; 1989: 55–81
Abstract
The advent of mass cytometry (CyTOF®) has permitted simultaneous detection of more than 40 antibody parameters at the single-cell level, although a limited number of metal-labeled antibodies are commercially available. Here we present optimized and scalable protocols for conjugation of lanthanide as well as bismuth ions to immunoglobulin (Ig) using a maleimide-functionalized chelating polymer and for characterization of the conjugate. The maleimide functional group is reactive with cysteine sulfhydryl groups generated through partial reduction of the Ig Fc region. Incubation of Ig with polymer pre-loaded with lanthanide ions produces metal-labeled Ig without disrupting antigen specificity. Antibody recovery rates can be determined by UV spectrophotometry and frequently exceeds 60%. Each custom-conjugated antibody is validated using positive and negative cellular control populations and is titrated for optimal staining at concentrations ranging from 0.1 to 10 μg/mL. The preparation of metal-labeled antibodies can be completed in 4.5 h, and titration requires an additional 3-5 h.
View details for PubMedID 31077099
-
Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis.
Scientific reports
2017; 7 (1): 5692
Abstract
Candida albicans is an opportunistic pathogen, typically found as a benign commensal yeast living on skin and mucosa, but poised to invade injured tissue to cause local infections. In debilitated and immunocompromised individuals, C. albicans may spread to cause life-threatening systemic infections. Upon contact with serum and at body temperature, C. albicans performs a regulated switch to filamentous morphology, characterized by emergence of a germ tube from the yeast cell followed by mold-like growth of branching hyphae. The ability to switch between growth morphologies is an important virulence factor of C. albicans. To identify compounds able to inhibit hyphal morphogenesis, we screened libraries of existing drugs for inhibition of the hyphal switch under stringent conditions. Several compounds that specifically inhibited hyphal morphogenesis were identified. Chemogenomic analysis suggested an interaction with the endocytic pathway, which was confirmed by direct measurement of fluid-phase endocytosis in the presence of these compounds. These results suggest that the activity of the endocytic pathway, which is known to be particularly important for hyphal growth, represents an effective target for hyphae-inhibiting drugs.
View details for DOI 10.1038/s41598-017-05741-y
View details for PubMedID 28720834
View details for PubMedCentralID PMC5515890
-
Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis.
journal of allergy and clinical immunology
2016
Abstract
Basophil activation tests (BATs) have promise for research and for clinical monitoring of patients with allergies. However, BAT protocols vary in blood anticoagulant used and temperature and time of storage before testing, complicating comparisons of results from various studies.We attempted to establish a BAT protocol that would permit analysis of blood within 24 hours of obtaining the sample.Blood from 46 healthy donors and 120 patients with peanut allergy was collected into EDTA or heparin tubes, and samples were stored at 4°C or room temperature for 4 or 24 hours before performing BATs.Stimulation with anti-IgE or IL-3 resulted in strong upregulation of basophil CD203c in samples collected in EDTA or heparin, stored at 4°C, and analyzed 24 hours after sample collection. However, a CD63(hi) population of basophils was not observed in any conditions in EDTA-treated samples unless exogenous calcium/magnesium was added at the time of anti-IgE stimulation. By contrast, blood samples collected in heparin tubes were adequate for quantification of upregulation of basophil CD203c and identification of a population of CD63(hi) basophils, irrespective of whether the specimens were analyzed by means of conventional flow cytometry or cytometry by time-of-flight mass spectrometry, and such tests could be performed after blood was stored for 24 hours at 4°C.BATs to measure upregulation of basophil CD203c and induction of a CD63(hi) basophil population can be conducted with blood obtained in heparin tubes and stored at 4°C for 24 hours.
View details for DOI 10.1016/j.jaci.2016.04.060
View details for PubMedID 27527263
View details for PubMedCentralID PMC5237629