Education & Certifications


  • B.Sc., Bilkent University, Electrical and Electronics Engineering (2019)

All Publications


  • Real-time impedimetric droplet measurement (iDM) LAB ON A CHIP Saateh, A., Kalantarifard, A., Celik, O., Asghari, M., Serhatlioglu, M., Elbuken, C. 2019; 19 (22): 3815–24

    Abstract

    Droplet-based microfluidic systems require a precise control of droplet physical properties; hence, measuring the morphological properties of droplets is critical to obtain high sensitivity analysis. The ability to perform such measurements in real-time is another demand which has not been addressed yet. In this study, we used coplanar electrodes configured in the differential measurement mode for impedimetric measurement of size and velocity. To obtain the size of the droplets, detailed 3D finite element simulations of the system were performed. The interaction of the non-uniform electric field and the droplet was investigated. Electrode geometry optimization steps were described and design guideline rules were laid out. User-friendly software was developed for real-time observation of droplet length and velocity together with in situ statistical analysis results. A comparison between impedimetric and optical measurement tools is given. Finally, to illustrate the benefit of having real-time analysis, iDM was used to synthesize particles with a predefined monodispersity limit and to study the response times of syringe pump and pressure pump driven droplet generation devices. This analysis allows one to evaluate the 'warm-up' time for a droplet generator system, after which droplets reach the desired steady-state size required by the application of interest.

    View details for DOI 10.1039/c9lc00641a

    View details for Web of Science ID 000494676200015

    View details for PubMedID 31638132

  • Analog Control of Retainable Resistance Multistates in HfO2 Resistive-Switching Random Access Memories (ReRAMs) ACS APPLIED ELECTRONIC MATERIALS Giovinazzo, C., Sandrini, J., Shahrabi, E., Celik, O., Leblebici, Y., Ricciardi, C. 2019; 1 (6): 900–909