Parijat Sarkar
Postdoctoral Scholar, Biochemistry
All Publications
-
Interplay of Cholesterol and Actin in Neurotransmitter GPCR Signaling: Insights from Chronic Cholesterol Depletion Using Statin
ACS CHEMICAL NEUROSCIENCE
2023: 3855-3868
Abstract
Serotonin1A receptors are important neurotransmitter receptors in the G protein-coupled receptor (GPCR) family and modulate a variety of neurological, behavioral, and cognitive functions. We recently showed that chronic cholesterol depletion by statins, potent inhibitors of HMG-CoA reductase (the rate-limiting enzyme in cholesterol biosynthesis), leads to polymerization of the actin cytoskeleton that alters lateral diffusion of serotonin1A receptors. However, cellular signaling by the serotonin1A receptor under chronic cholesterol depletion remains unexplored. In this work, we explored signaling by the serotonin1A receptor under statin-treated condition. We show that cAMP signaling by the receptor is reduced upon lovastatin treatment due to reduction in cholesterol as well as polymerization of the actin cytoskeleton. To the best of our knowledge, these results constitute the first report describing the effect of chronic cholesterol depletion on the signaling of a G protein-coupled neuronal receptor. An important message arising from these results is that it is prudent to include the contribution of actin polymerization while analyzing changes in membrane protein function due to chronic cholesterol depletion by statins. Notably, our results show that whereas actin polymerization acts as a negative regulator of cAMP signaling, cholesterol could act as a positive modulator. These results assume significance in view of reports highlighting symptoms of anxiety and depression in humans upon statin administration and the role of serotonin1A receptors in anxiety and depression. Overall, these results reveal a novel role of actin polymerization induced by chronic cholesterol depletion in modulating GPCR signaling, which could act as a potential therapeutic target.
View details for DOI 10.1021/acschemneuro.3c00472
View details for Web of Science ID 001082556600001
View details for PubMedID 37804226
-
Metabolic Depletion of Sphingolipids Inhibits Agonist-induced Endocytosis of the Serotonin1A Receptor.
Traffic (Copenhagen, Denmark)
2022
Abstract
G protein-coupled receptors (GPCRs) are vital cellular signaling machinery and currently represent ~40% drug targets. Endocytosis of GPCRs is an important process that allows stringent spatiotemporal control over receptor population on the cell surface. Although the role of proteins in GPCR endocytosis is well addressed, the contribution of membrane lipids in this process is rather unexplored. Sphingolipids are essential functional lipids in higher eukaryotes and are implicated in several neurological functions. To understand the role of sphingolipids in GPCR endocytosis, we subjected cells expressing human serotonin1A receptors (an important neurotransmitter GPCR involved in cognitive and behavioral functions) to metabolic sphingolipid depletion using fumonisin B1 , an inhibitor of sphingolipid biosynthetic pathway. Our results, using flow cytometric analysis and confocal microscopic imaging, show that sphingolipid depletion inhibits agonist-induced endocytosis of the serotonin1A receptor in a concentration-dependent manner, which was restored when sphingolipid levels were replenished. We further show that there was no change in the internalization of transferrin, a marker for clathrin-mediated endocytosis, under sphingolipid-depleted condition, highlighting the specific requirement of sphingolipids for endocytosis of serotonin1A receptors. Our results reveal the regulatory role of sphingolipids in GPCR endocytosis and highlight the importance of neurotransmitter receptor trafficking in health and disease.
View details for DOI 10.1111/tra.12879
View details for PubMedID 36533718