Bio


Paula Welander is a microbiologist who received her undergraduate degree from Occidental College in Los Angeles. She pursued her PhD studies in microbiology at the University of Illinois at Urbana-Champaign and completed her postdoctoral studies at MIT in the Departments of Biology and of Earth, Atmospheric, and Planetary Sciences. Paula joined the Stanford faculty in 2013 where her current research program is focused on understanding the biosynthesis and physiological function of “molecular fossils” or biomarkers in extant bacteria.

Academic Appointments


Administrative Appointments


  • NASA Astrobiology Postdoctoral Fellow, Massachusetts Institute of Technology (2012 - 2012)
  • Research Scientist, Massachusetts Institute of Technology (2011 - 2012)
  • NSF Minority Postdoctoral Fellow, Massachusetts Institute of Technology (2008 - 2011)
  • National Science Foundation Graduate Research Fellow, University of Illinois at Urbana-Champaign (2002 - 2005)
  • Graduate College Fellow, University of Illinois at Urbana-Champaign (2001 - 2007)
  • Research Associate I, Beckman Research Institute, City of Hope (1999 - 2001)
  • Research Assistant I, California Institute of Technology (1998 - 1999)

Honors & Awards


  • Excellence in Teaching Award, Stanford University (2019)
  • Faculty Early Career Development (CAREER) Award, National Science Foundation, Division of Earth Sciences (2018)
  • Geobiology and Geomicrobiology Division Award for Outstanding Research (pre-tenure), Geological Society of America (2018)
  • Hoagland Award Fund for Innovations in Undergraduate Teaching, Stanford University (2017)
  • Terman Fellow, Stanford University (2014)
  • Gabilan Faculty Fellow, Stanford University (2013)
  • NASA Astrobiology Postdoctoral Fellowship, NASA Postdoctoral Program (2012)
  • OGD 2010 Best Paper Award, Geochemical Society (2011)
  • NSF Minority Postdoctoral Research Fellowship, National Science Foundation (2008)
  • Mame Shiao Debbie Award, University of Illinois at Urbana-Champaign (2006)
  • Outstanding Teaching Assistant, University of Illinois at Urbana-Champaign (2005-2006)
  • Recipient, Gordon Conference Minority Student Travel Grant (2003)
  • NSF Graduate Research Fellowship, National Science Foundation (2002)
  • Graduate College Fellowship, University of Illinois at Urbana-Champaign (2001)
  • Recipient, Declined, NIH MCB Training Grant Fellowship, University of Illinois at Urbana-Champaign (2001)
  • Recipient, Howard Hughes Medical Institute Undergraduate Research Grant (1998)
  • Fellow, Richter Fellowship (1997)
  • Undergraduate Research Academic Support Program Grant, Occidental College (1997)
  • Recipient, Cal Grant (1995 – 1998)

Boards, Advisory Committees, Professional Organizations


  • Member, American Society of Microbiology (2002 - Present)
  • Member, American Geological Union (2013 - Present)
  • Member, European Association of Geochemistry (2013 - Present)
  • Editorial Board Member, Geobiology Journal (2014 - Present)
  • Member, Society for Advancement of Chicanos and Native Americans in Science (SACNAS) (2016 - Present)

Professional Education


  • Ph.D., University of Illinois at Urbana-Champaign, Urbana, IL, Microbiology (2007)
  • M.S., University of Illinois at Urbana-Champaign, Urbana, IL, Microbiology (2003)
  • B.A., Occidental College, Los Angeles, CA, Kinesiology (1998)

Current Research and Scholarly Interests


Earth’s history is marked with periods of dramatic atmospheric and climate fluctuations that have greatly affected life and its evolution. Much of our knowledge of how the biosphere responded to these ancient events stems from studies of faunal and floral fossils revealing profound changes in the abundance and diversity of macroscopic organisms. However, much less is known about microbial community responses to such dramatic environmental changes. This is one of the great challenges of geomicrobiology - how do we study microbial communities in the context of Earth’s distant past?

Although microbes do not readily leave diagnostic morphological fossils, subtle microbial signatures are recorded in sedimentary rocks spanning billions of years. One such group of biosignatures are well-preserved lipid compounds that have specific biological origins and can function as biomarkers for the occurrence of specific microbes or environmental conditions at the time of deposition. However, many questions remain about the extant sources and the biosynthetic pathways of these lipids in modern organisms. In my research group, we focus on improving our understanding of the taxonomic distribution, the biosynthesis, and physiological function of biomarker lipids in extant microbes. Below are three biomarker areas that we are currently exploring in the Welander group:

1. Bacterial production of eukaryotic biomarkers. Eukaryotic biomarkers are specific lipid molecules that are considered diagnostic for certain eukaryotic organisms – from multicellular animals like sponges to unicellular eukaryotes such as protist. However, some bacterial species have been shown to produce these “eukaryotic” lipids and there are several open questions regarding how bacteria synthesize and utilize these lipids. We have identified unique bacterial proteins in aerobic methanotrophs for the synthesis of tetrahymanol, a cyclic triterpenoid primarily produced by ciliated protists, and sterols, essential lipids found in almost all eukaryotic cells. We are currently exploring the biochemical mechanisms behind these unique bacterial proteins and are also investigating the physiological function of these "eukaryoitc" lipids in a variety of bacteria.

2. Identification of orphan biomarker sources. Orphan biomarkers are lipids identified in ancient or modern sediments for which there are no extant sources or the extant sources are not consistent with their occurrence in a specific environment or time period. One example is isoarborinol, an unusual pentacyclic triterpenol whose only known extant sources are certain flowering plants. Through our work, we have identified two novel arborinol lipids structurally similar to isoarborinol, which we named eudoraenol and adriaticol, in the marine bacterium Eudoraea adriatica. We are currently investigating the phylogenetic distribution of eudoraneol cyclase homologs in environmental metagenomes and are utilizing an E. coli heterologous expression system developed in our lab to express these cyclases in the lab.

3. Lipid biosynthesis in archaea. Glycerol dialkyl glycerol tetraethers (GDGTs) are unique archaeal membrane lipids that can function not just as biomarkers for archaea but can also be used as paleotemperature proxies. However, the pathway for GDGT synthesis has not been fully characterized and we have been attempting to identify the missing synthesis proteins in the thermoacidophile Sulfolobus acidocaldarius. Thus far, we have identified a novel protein, calditol synthase (Cds), necessary for modifying the glycosylated membrane head groups of Sulfolobus. We have also identified two novel proteins, GDGT-ring synthases, required for introducing the cyclopentane rings within the core GDGT structure. We are currently characterizing these GDGT biosynthesis proteins and continue to search for other unknown tetraether lipid biosynthesis proteins in archaea and bacteria.

2018-19 Courses


Stanford Advisees


Graduate and Fellowship Programs


  • Biology (School of Humanities and Sciences) (Phd Program)

All Publications


  • Deciphering the evolutionary history of microbial cyclic triterpenoids. Free radical biology & medicine Welander, P. V. 2019

    Abstract

    Cyclic triterpenoids are a class of lipids that have fascinated chemists, biologist, and geologist alike for many years. These molecules have diverse physiological roles in a variety of bacterial and eukaryotic organisms and a shared evolutionary ancestry that is reflected in the elegant biochemistry required for their synthesis. Cyclic triterpenoids are also quite recalcitrant and are preserved in sedimentary rocks where they are utilized as "molecular fossils" or biomarkers that can physically link microbial taxa and their metabolisms to a specific time or event in Earth's history. However, a proper interpretation of cyclic triterpenoid biosignatures requires a robust understanding of their function in extant organisms and in the evolutionary history of their biosynthetic pathways. Here, I review two potential cyclic triterpenoid evolutionary scenarios and the recent genetic and biochemical studies that are providing experimental evidence to distinguish between these hypotheses. The study of cyclic triterpenoids will continue to provide a wealth of information that can significantly impact the interpretation of lipid biosignatures in the rock record and provides a compelling model of how two natural repositories of evolutionary history available on Earth, the geologic record in sedimentary rocks and the molecular record in living organisms, can be linked.

    View details for PubMedID 31071437

  • Calditol-linked membrane lipids are required for acid tolerance in Sulfolobus acidocaldarius. Proceedings of the National Academy of Sciences of the United States of America Zeng, Z., Liu, X., Wei, J. H., Summons, R. E., Welander, P. V. 2018

    Abstract

    Archaea have many unique physiological features of which the lipid composition of their cellular membranes is the most striking. Archaeal ether-linked isoprenoidal membranes can occur as bilayers or monolayers, possess diverse polar head groups, and a multiplicity of ring structures in the isoprenoidal cores. These lipid structures are proposed to provide protection from the extreme temperature, pH, salinity, and nutrient-starved conditions that many archaea inhabit. However, many questions remain regarding the synthesis and physiological role of some of the more complex archaeal lipids. In this study, we identify a radical S-adenosylmethionine (SAM) protein in Sulfolobus acidocaldarius required for the synthesis of a unique cyclopentyl head group, known as calditol. Calditol-linked glycerol dibiphytanyl glycerol tetraethers (GDGTs) are membrane spanning lipids in which calditol is ether bonded to the glycerol backbone and whose production is restricted to a subset of thermoacidophilic archaea of the Sulfolobales order within the Crenarchaeota phylum. Several studies have focused on the enzymatic mechanism for the synthesis of the calditol moiety, but to date no protein that catalyzes this reaction has been discovered. Phylogenetic analyses of this putative calditol synthase (Cds) reveal the genetic potential for calditol-GDGT synthesis in phyla other than the Crenarchaeota, including the Korarchaeota and Marsarchaeota. In addition, we identify Cds homologs in metagenomes predominantly from acidic ecosystems. Finally, we demonstrate that deletion of calditol synthesis renders S. acidocaldarius sensitive to extremely low pH, indicating that calditol plays a critical role in protecting archaeal cells from acidic stress.

    View details for PubMedID 30518563

  • Soil exchange rates of COS and CO18O differ with the diversity of microbial communities and their carbonic anhydrase enzymes. The ISME journal Meredith, L. K., Ogee, J., Boye, K., Singer, E., Wingate, L., von Sperber, C., Sengupta, A., Whelan, M., Pang, E., Keiluweit, M., Bruggemann, N., Berry, J. A., Welander, P. V. 2018

    Abstract

    Differentiating the contributions of photosynthesis and respiration to the global carbon cycle is critical for improving predictive climate models. Carbonic anhydrase (CA) activity in leaves is responsible for the largest biosphere-atmosphere trace gas fluxes of carbonyl sulfide (COS) and the oxygen-18 isotopologue of carbon dioxide (CO18O) that both reflect gross photosynthetic rates. However, CA activity also occurs in soils and will be a source of uncertainty in the use of COS and CO18O as carbon cycle tracers until process-based constraints are improved. In this study, we measured COS and CO18O exchange rates and estimated the corresponding CA activity in soils from a range of biomes and land use types. Soil CA activity was not uniform for COS and CO2, and patterns of divergence were related to microbial community composition and CA gene expression patterns. In some cases, the same microbial taxa and CA classes catalyzed both COS and CO2 reactions in soil, but in other cases the specificity towards the two substrates differed markedly. CA activity for COS was related to fungal taxa and beta-D-CA expression, whereas CA activity for CO2 was related to algal and bacterial taxa and alpha-CA expression. This study integrates gas exchange measurements, enzyme activity models, and characterization of soil taxonomic and genetic diversity to build connections between CA activity and the soil microbiome. Importantly, our results identify kinetic parameters to represent soil CA activity during application of COS and CO18O as carbon cycle tracers.

    View details for PubMedID 30214028

  • C-4 sterol demethylation enzymes distinguish bacterial and eukaryotic sterol synthesis. Proceedings of the National Academy of Sciences of the United States of America Lee, A. K., Banta, A. B., Wei, J. H., Kiemle, D. J., Feng, J., Giner, J. L., Welander, P. V. 2018; 115 (23): 5884–89

    Abstract

    Sterols are essential eukaryotic lipids that are required for a variety of physiological roles. The diagenetic products of sterol lipids, sterane hydrocarbons, are preserved in ancient sedimentary rocks and are utilized as geological biomarkers, indicating the presence of both eukaryotes and oxic environments throughout Earth's history. However, a few bacterial species are also known to produce sterols, bringing into question the significance of bacterial sterol synthesis for our interpretation of sterane biomarkers. Recent studies suggest that bacterial sterol synthesis may be distinct from what is observed in eukaryotes. In particular, phylogenomic analyses of sterol-producing bacteria have failed to identify homologs of several key eukaryotic sterol synthesis enzymes, most notably those required for demethylation at the C-4 position. In this study, we identified two genes of previously unknown function in the aerobic methanotrophic γ-Proteobacterium Methylococcus capsulatus that encode sterol demethylase proteins (Sdm). We show that a Rieske-type oxygenase (SdmA) and an NAD(P)-dependent reductase (SdmB) are responsible for converting 4,4-dimethylsterols to 4α-methylsterols. Identification of intermediate products synthesized during heterologous expression of SdmA-SdmB along with 13C-labeling studies support a sterol C-4 demethylation mechanism distinct from that of eukaryotes. SdmA-SdmB homologs were identified in several other sterol-producing bacterial genomes but not in any eukaryotic genomes, indicating that these proteins are unrelated to the eukaryotic C-4 sterol demethylase enzymes. These findings reveal a separate pathway for sterol synthesis exclusive to bacteria and show that demethylation of sterols evolved at least twice-once in bacteria and once in eukaryotes.

    View details for PubMedID 29784781

  • Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Banta, A. B., Wei, J. H., Gill, C. C., Giner, J., Welander, P. V. 2017; 114 (2): 245-250

    Abstract

    Cyclic triterpenoids are a broad class of polycyclic lipids produced by bacteria and eukaryotes. They are biologically relevant for their roles in cellular physiology, including membrane structure and function, and biochemically relevant for their exquisite enzymatic cyclization mechanism. Cyclic triterpenoids are also geobiologically significant as they are readily preserved in sediments and are used as biomarkers for ancient life throughout Earth's history. Isoarborinol is one such triterpenoid whose only known biological sources are certain angiosperms and whose diagenetic derivatives (arboranes) are often used as indicators of terrestrial input into aquatic environments. However, the occurrence of arborane biomarkers in Permian and Triassic sediments, which predates the accepted origin of angiosperms, suggests that microbial sources of these lipids may also exist. In this study, we identify two isoarborinol-like lipids, eudoraenol and adriaticol, produced by the aerobic marine heterotrophic bacterium Eudoraea adriatica Phylogenetic analysis demonstrates that the E. adriatica eudoraenol synthase is an oxidosqualene cyclase homologous to bacterial lanosterol synthases and distinct from plant triterpenoid synthases. Using an Escherichia coli heterologous sterol expression system, we demonstrate that substitution of four amino acid residues in a bacterial lanosterol synthase enabled synthesis of pentacyclic arborinols in addition to tetracyclic sterols. This variant provides valuable mechanistic insight into triterpenoid synthesis and reveals diagnostic amino acid residues to differentiate between sterol and arborinol synthases in genomic and metagenomic datasets. Our data suggest that there may be additional bacterial arborinol producers in marine and freshwater environments that could expand our understanding of these geologically informative lipids.

    View details for DOI 10.1073/pnas.1617231114

    View details for Web of Science ID 000391439300033

    View details for PubMedID 28028245

    View details for PubMedCentralID PMC5240688

  • Microbial communities and organic biomarkers in a Proterozoic-analog sinkhole. Geobiology Hamilton, T. L., Welander, P. V., Albrecht, H. L., Fulton, J. M., Schaperdoth, I., Bird, L. R., Summons, R. E., Freeman, K. H., Macalady, J. L. 2017; 15 (6): 784–97

    Abstract

    Little Salt Spring (Sarasota County, FL, USA) is a sinkhole with groundwater vents at ~77 m depth. The entire water column experiences sulfidic (~50 μM) conditions seasonally, resulting in a system poised between oxic and sulfidic conditions. Red pinnacle mats occupy the sediment-water interface in the sunlit upper basin of the sinkhole, and yielded 16S rRNA gene clones affiliated with Cyanobacteria, Chlorobi, and sulfate-reducing clades of Deltaproteobacteria. Nine bacteriochlorophyll e homologues and isorenieratene indicate contributions from Chlorobi, and abundant chlorophyll a and pheophytin a are consistent with the presence of Cyanobacteria. The red pinnacle mat contains hopanoids, including 2-methyl structures that have been interpreted as biomarkers for Cyanobacteria. A single sequence of hpnP, the gene required for methylation of hopanoids at the C-2 position, was recovered in both DNA and cDNA libraries from the red pinnacle mat. The hpnP sequence was most closely related to cyanobacterial hpnP sequences, implying that Cyanobacteria are a source of 2-methyl hopanoids present in the mat. The mats are capable of light-dependent primary productivity as evidenced by (13) C-bicarbonate photoassimilation. We also observed (13) C-bicarbonate photoassimilation in the presence of DCMU, an inhibitor of electron transfer to Photosystem II. Our results indicate that the mats carry out light-driven primary production in the absence of oxygen production-a mechanism that may have delayed the oxygenation of the Earth's oceans and atmosphere during the Proterozoic Eon. Furthermore, our observations of the production of 2-methyl hopanoids by Cyanobacteria under conditions of low oxygen and low light are consistent with the recovery of these structures from ancient black shales as well as their paucity in modern marine environments.

    View details for DOI 10.1111/gbi.12252

    View details for PubMedID 29035021

  • Fractionation of the methane isotopologues (CH4)-C-13, (CH3D)-C-12, and (CH3D)-C-13 during aerobic oxidation of methane by Methylococcus capsulatus (Bath) GEOCHIMICA ET COSMOCHIMICA ACTA Wang, D. T., Welander, P. V., Ono, S. 2016; 192: 186-202
  • Sterol Synthesis in Diverse Bacteria FRONTIERS IN MICROBIOLOGY Wei, J. H., Yin, X., Welander, P. V. 2016; 7

    Abstract

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria produced demethylated and saturated sterol products even though they lacked homologs of the eukaryotic proteins required for these modifications emphasizing that several aspects of bacterial sterol synthesis are still completely unknown.

    View details for DOI 10.3389/fmicb.2016.00990

    View details for Web of Science ID 000378390400001

    View details for PubMedID 27446030

    View details for PubMedCentralID PMC4919349

  • A distinct pathway for tetrahymanol synthesis in bacteria PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Banta, A. B., Wei, J. H., Welander, P. V. 2015; 112 (44): 13478-13483

    Abstract

    Tetrahymanol is a polycyclic triterpenoid lipid first discovered in the ciliate Tetrahymena pyriformis whose potential diagenetic product, gammacerane, is often used as a biomarker for water column stratification in ancient ecosystems. Bacteria are also a potential source of tetrahymanol, but neither the distribution of this lipid in extant bacteria nor the significance of bacterial tetrahymanol synthesis for interpreting gammacerane biosignatures is known. Here we couple comparative genomics with genetic and lipid analyses to link a protein of unknown function to tetrahymanol synthesis in bacteria. This tetrahymanol synthase (Ths) is found in a variety of bacterial genomes, including aerobic methanotrophs, nitrite-oxidizers, and sulfate-reducers, and in a subset of aquatic and terrestrial metagenomes. Thus, the potential to produce tetrahymanol is more widespread in the bacterial domain than previously thought. However, Ths is not encoded in any eukaryotic genomes, nor is it homologous to eukaryotic squalene-tetrahymanol cyclase, which catalyzes the cyclization of squalene directly to tetrahymanol. Rather, heterologous expression studies suggest that bacteria couple the cyclization of squalene to a hopene molecule by squalene-hopene cyclase with a subsequent Ths-dependent ring expansion to form tetrahymanol. Thus, bacteria and eukaryotes have evolved distinct biochemical mechanisms for producing tetrahymanol.

    View details for DOI 10.1073/pnas.1511482112

    View details for Web of Science ID 000364164900041

    View details for PubMedID 26483502

  • Methane Oxidation and Molecular Characterization of Methanotrophs from a Former Mercury Mine Impoundment. Microorganisms Baesman, S. M., Miller, L. G., Wei, J. H., Cho, Y., Matys, E. D., Summons, R. E., Welander, P. V., Oremland, R. S. 2015; 3 (2): 290-309

    Abstract

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO₂ with some CH₄ present. The δ(13)CH₄ value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively (12)C-enriched CO₂ suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

    View details for DOI 10.3390/microorganisms3020290

    View details for PubMedID 27682090

    View details for PubMedCentralID PMC5023233

  • Elucidation of the Burkholderia cenocepacia hopanoid biosynthesis pathway uncovers functions for conserved proteins in hopanoid-producing bacteria ENVIRONMENTAL MICROBIOLOGY Schmerk, C. L., Welander, P. V., Hamad, M. A., Bain, K. L., Bernards, M. A., Summons, R. E., Valvano, M. A. 2015; 17 (3): 735-750

    Abstract

    Hopanoids are bacterial surrogates of eukaryotic membrane sterols and among earth's most abundant natural products. Their molecular fossils remain in sediments spanning more than a billion years. However, hopanoid metabolism and function are not fully understood. Burkholderia species are environmental opportunistic pathogens that produce hopanoids and also occupy diverse ecological niches. We investigated hopanoids biosynthesis in Burkholderia cenocepacia by deletion mutagenesis and structural characterization of the hopanoids produced by the mutants. The enzymes encoded by hpnH and hpnG were essential for production of all C35 extended hopanoids, including bacteriohopanetetrol (BHT), BHT glucosamine and BHT cyclitol ether. Deletion of hpnI resulted in BHT production, while ΔhpnJ produced only BHT glucosamine. Thus, HpnI is required for BHT glucosamine production while HpnJ is responsible for its conversion to the cyclitol ether. The ΔhpnH and ΔhpnG mutants could not grow under any stress condition tested, whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.

    View details for DOI 10.1111/1462-2920.12509

    View details for Web of Science ID 000351435600019

    View details for PubMedID 24888970

  • Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche ISME JOURNAL Ricci, J. N., Coleman, M. L., Welander, P. V., Sessions, A. L., Summons, R. E., Spear, J. R., Newman, D. K. 2014; 8 (3): 675-684

    Abstract

    Molecular fossils of 2-methylhopanoids are prominent biomarkers in modern and ancient sediments that have been used as proxies for cyanobacteria and their main metabolism, oxygenic photosynthesis. However, substantial culture and genomic-based evidence now indicates that organisms other than cyanobacteria can make 2-methylhopanoids. Because few data directly address which organisms produce 2-methylhopanoids in the environment, we used metagenomic and clone library methods to determine the environmental diversity of hpnP, the gene encoding the C-2 hopanoid methylase. Here we show that hpnP copies from alphaproteobacteria and as yet uncultured organisms are found in diverse modern environments, including some modern habitats representative of those preserved in the rock record. In contrast, cyanobacterial hpnP genes are rarer and tend to be localized to specific habitats. To move beyond understanding the taxonomic distribution of environmental 2-methylhopanoid producers, we asked whether hpnP presence might track with particular variables. We found hpnP to be significantly correlated with organisms, metabolisms and environments known to support plant-microbe interactions (P-value<10(-6)); in addition, we observed diverse hpnP types in closely packed microbial communities from other environments, including stromatolites, hot springs and hypersaline microbial mats. The common features of these niches indicate that 2-methylhopanoids are enriched in sessile microbial communities inhabiting environments low in oxygen and fixed nitrogen with high osmolarity. Our results support the earlier conclusion that 2-methylhopanoids are not reliable biomarkers for cyanobacteria or any other taxonomic group, and raise the new hypothesis that, instead, they are indicators of a specific environmental niche.

    View details for DOI 10.1038/ismej.2013.191

    View details for Web of Science ID 000331879900016

    View details for PubMedID 24152713

    View details for PubMedCentralID PMC3930323

  • Molecular indicators of microbial diversity in oolitic sands of Highborn Cay, Bahamas Geobiology Edgecomb, V. P., Bernhard, J. M., Beaudoin, D., Pruss, S., Welander, P. V., Shubotz, F., Mehay, S., Gillespie, A. L., Summons, R. E. 2013; 11: 234-251
  • Identification and quantification of polyfunctionalized hopanoids by high temperature gas chromatography-mass spectrometry. Organic geochemistry Sessions, A. L., Zhang, L., Welander, P. V., Doughty, D., Summons, R. E., Newman, D. K. 2013; 56: 120–30

    Abstract

    Hopanoids are triterpenoids produced mainly by bacteria, are ubiquitous in the environment, and have many important applications as biological markers. A wide variety of related hopanoid structures exists, many of which are polyfunctionalized. These modifications render the hopanoids too involatile for conventional gas chromatography (GC) separation, so require either laborious oxidative cleavage of the functional groups or specialized high temperature (HT) columns. Here we describe the systematic evaluation and optimization of a HT-GC method for the analysis of polyfunctionalized hopanoids and their methylated homologs. Total lipid extracts are derivatized with acetic anhydride and no further treatment or workup is required. We show that acid or base hydrolysis to remove di- and triacylglycerides leads to degradation of several BHP structures. DB-XLB type columns can elute hopanoids up to bacteriohopane-tetrol at 350 °C, with baseline separation of all 2-methyl/desmethyl homologs. DB-5HT type columns can additionally elute bacteriohopaneaminotriol and bacteriohopaneaminotetrol, but do not fully separate 2-methyl/desmethyl homologs. The method gave 2- to 7-fold higher recovery of hopanoids than oxidative cleavage and can provide accurate quantification of all analytes including 2-methyl hopanoids. By comparing data from mass spectra with those from a flame ionization detector, we show that the mass spectromet (MS) response factors for different hopanoids using either total ion counts or m/z 191 vary substantially. Similarly, 2-methyl ratios estimated from selected-ion data are lower than those from FID by 10-30% for most hopanoids, but higher by ca. 10% for bacteriohopanetetrol. Mass spectra for a broad suite of hopanoids, including 2-methyl homologs, from Rhodopseudomonas palustris are presented, together with the tentative assignment of several new hopanoid degradation products.

    View details for PubMedID 24496464

    View details for PubMedCentralID PMC3780965

  • Identification and characterization of Rhodopseudomonas palustris hopanoid biosynthesis mutants Geobiology Welander, P. V., Doughty, D. M., Wu, C. H., Mehay, S., Summons, R. E., Newman, D. K. 2012; 10: 163-177
  • Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proceedings of the National Academy of Sciences of the United States of America Welander, P. V., Summons, R. E. 2012; 109 (32): 12905–10

    Abstract

    Hopanoids methylated at the C-3 position are a subset of bacterial triterpenoids that are readily preserved in modern and ancient sediments and in petroleum. The production of 3-methylhopanoids by extant aerobic methanotrophs and their common occurrence in modern and fossil methane seep communities, in conjunction with carbon isotope analysis, has led to their use as biomarker proxies for aerobic methanotrophy. In addition, these lipids are also produced by aerobic acetic acid bacteria and, lacking carbon isotope analysis, are more generally used as indicators for aerobiosis in ancient ecosystems. However, recent genetic studies have brought into question our current understanding of the taxonomic diversity of methylhopanoid-producing bacteria and have highlighted that a proper interpretation of methylhopanes in the rock record requires a deeper understanding of their cellular function. In this study, we identified and deleted a gene, hpnR, required for methylation of hopanoids at the C-3 position in the obligate methanotroph Methylococcus capsulatus strain Bath. Bioinformatics analysis revealed that the taxonomic distribution of HpnR extends beyond methanotrophic and acetic acid bacteria. Phenotypic analysis of the M. capsulatus hpnR deletion mutant demonstrated a potential physiological role for 3-methylhopanoids; they appear to be required for the maintenance of intracytoplasmic membranes and cell survival in late stationary phase. Therefore, 3-methylhopanoids may prove more useful as proxies for specific environmental conditions encountered during stationary phase rather than a particular bacterial group.

    View details for PubMedID 22826256

    View details for PubMedCentralID PMC3420191

  • Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of Candidatus Chloracidobacterium thermophilum Journal of Bacteriology Garcia Costas, A. M., Tsukatani, Y., Rijpstra, W. I., Schouten, S., Welander, P. V., Summons, R. E., Bryant, D. A. 2012; 194: 1158-68
  • Using Taguchi-based statistics to produce robust PCR results Bioprocessing Welander, P., Cantin, E., Lundberg, P. 2011; 10: 22-26
  • Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proceedings of the National Academy of Sciences of the United States of America Welander, P. V., Coleman, M. L., Sessions, A. L., Summons, R. E., Newman, D. K. 2010; 107 (19): 8537–42

    Abstract

    The rise of atmospheric oxygen has driven environmental change and biological evolution throughout much of Earth's history and was enabled by the evolution of oxygenic photosynthesis in the cyanobacteria. Dating this metabolic innovation using inorganic proxies from sedimentary rocks has been difficult and one important approach has been to study the distributions of fossil lipids, such as steranes and 2-methylhopanes, as biomarkers for this process. 2-methylhopanes arise from degradation of 2-methylbacteriohopanepolyols (2-MeBHPs), lipids thought to be synthesized primarily by cyanobacteria. The discovery that 2-MeBHPs are produced by an anoxygenic phototroph, however, challenged both their taxonomic link with cyanobacteria and their functional link with oxygenic photosynthesis. Here, we identify a radical SAM methylase encoded by the hpnP gene that is required for methylation at the C-2 position in hopanoids. This gene is found in several, but not all, cyanobacteria and also in alpha -proteobacteria and acidobacteria. Thus, one cannot extrapolate from the presence of 2-methylhopanes alone, in modern environments or ancient sedimentary rocks, to a particular taxonomic group or metabolism. To understand the origin of this gene, we reconstructed the evolutionary history of HpnP. HpnP proteins from cyanobacteria, Methylobacterium species, and other alpha-proteobacteria form distinct phylogenetic clusters, but the branching order of these clades could not be confidently resolved. Hence,it is unclear whether HpnP, and 2-methylhopanoids, originated first in the cyanobacteria. In summary, existing evidence does not support the use of 2-methylhopanes as biomarkers for oxygenic photosynthesis.

    View details for PubMedID 20421508

    View details for PubMedCentralID PMC2889317

  • The continuing puzzle of the great oxidation event Current Biology Sessions, A. L., Doughty, D. M., Welander, P. V., Summons, R. E., Newman, D. K. 2009; 19: R567-R574
  • Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. Journal of bacteriology Welander, P. V., Hunter, R. C., Zhang, L., Sessions, A. L., Summons, R. E., Newman, D. K. 2009; 191 (19): 6145–56

    Abstract

    Sedimentary hopanes are pentacyclic triterpenoids that serve as biomarker proxies for bacteria and certain bacterial metabolisms, such as oxygenic photosynthesis and aerobic methanotrophy. Their parent molecules, the bacteriohopanepolyols (BHPs), have been hypothesized to be the bacterial equivalent of sterols. However, the actual function of BHPs in bacterial cells is poorly understood. Here, we report the physiological study of a mutant in Rhodopseudomonas palustris TIE-1 that is unable to produce any hopanoids. The deletion of the gene encoding the squalene-hopene cyclase protein (Shc), which cyclizes squalene to the basic hopene structure, resulted in a strain that no longer produced any polycyclic triterpenoids. This strain was able to grow chemoheterotrophically, photoheterotrophically, and photoautotrophically, demonstrating that hopanoids are not required for growth under normal conditions. A severe growth defect, as well as significant morphological damage, was observed when cells were grown under acidic and alkaline conditions. Although minimal changes in shc transcript expression were observed under certain conditions of pH shock, the total amount of hopanoid production was unaffected; however, the abundance of methylated hopanoids significantly increased. This suggests that hopanoids may play an indirect role in pH homeostasis, with certain hopanoid derivatives being of particular importance.

    View details for PubMedID 19592593

    View details for PubMedCentralID PMC2747905

  • Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway Journal of Bacteriology Welander, P. V., Metcalf, W. W. 2008; 190: 1928-1936
  • Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2 Journal of Virology Lundberg, P., Welander, P. V., Edwards, 3rd, C. K., van Rooijen, N., Cantin, E. 2007; 81: 1451-1460
  • Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway Proceedings of the National Academy of Sciences Welander, P. V., Metcalf, W. W. 2005; 102: 10664-10669
  • Herpes simplex virus type 1 DNA is immunostimulatory in vitro and in vivo Journal of Virology Lundberg, P., Welander, P., Han, X., Cantin, E. 2003; 77: 11158-11169
  • A locus on mouse chromosome 6 that determines resistance to herpes simplex virus also influences reactivation, while an unlinked locus augments resistance of female mice Journal of Virology Lundberg, P., Welander, P., Openshaw, H., Nalbandian, C., Edwards, C., Moldawer, L., Cantin, E. 2003; 77: 11661-11673