All Publications


  • Versatile phenotype-activated cell sorting SCIENCE ADVANCES Lee, J., Liu, Z., Suzuki, P. H., Ahrens, J. F., Lai, S., Lu, X., Guan, S., St-Pierre, F. 2020; 6 (43)

    Abstract

    Unraveling the genetic and epigenetic determinants of phenotypes is critical for understanding and re-engineering biology and would benefit from improved methods to separate cells based on phenotypes. Here, we report SPOTlight, a versatile high-throughput technique to isolate individual yeast or human cells with unique spatiotemporal profiles from heterogeneous populations. SPOTlight relies on imaging visual phenotypes by microscopy, precise optical tagging of single target cells, and retrieval of tagged cells by fluorescence-activated cell sorting. To illustrate SPOTlight's ability to screen cells based on temporal properties, we chose to develop a photostable yellow fluorescent protein for extended imaging experiments. We screened 3 million cells expressing mutagenesis libraries and identified a bright new variant, mGold, that is the most photostable yellow fluorescent protein reported to date. We anticipate that the versatility of SPOTlight will facilitate its deployment to decipher the rules of life, understand diseases, and engineer new molecules and cells.

    View details for DOI 10.1126/sciadv.abb7438

    View details for Web of Science ID 000582114600021

    View details for PubMedID 33097540

  • Double Emulsion Picoreactors for High-Throughput Single-Cell Encapsulation and Phenotyping via FACS. Analytical chemistry Brower, K. K., Khariton, M., Suzuki, P. H., Still, C. 2., Kim, G., Calhoun, S. G., Qi, L. S., Wang, B., Fordyce, P. M. 2020

    Abstract

    In the past five years, droplet microfluidic techniques have unlocked new opportunities for the high-throughput genome-wide analysis of single cells, transforming our understanding of cellular diversity and function. However, the field lacks an accessible method to screen and sort droplets based on cellular phenotype upstream of genetic analysis, particularly for large and complex cells. To meet this need, we developed Dropception, a robust, easy-to-use workflow for precise single-cell encapsulation into picoliter-scale double emulsion droplets compatible with high-throughput screening via fluorescence-activated cell sorting (FACS). We demonstrate the capabilities of this method by encapsulating five standardized mammalian cell lines of varying sizes and morphologies as well as a heterogeneous cell mixture of a whole dissociated flatworm (5-25 mum in diameter) within highly monodisperse double emulsions (35 mum in diameter). We optimize for preferential encapsulation of single cells with extremely low multiple-cell loading events (<2% of cell-containing droplets), thereby allowing direct linkage of cellular phenotype to genotype. Across all cell lines, cell loading efficiency approaches the theoretical limit with no observable bias by cell size. FACS measurements reveal the ability to discriminate empty droplets from those containing cells with good agreement to single-cell occupancies quantified via microscopy, establishing robust droplet screening at single-cell resolution. High-throughput FACS screening of cellular picoreactors has the potential to shift the landscape of single-cell droplet microfluidics by expanding the repertoire of current nucleic acid droplet assays to include functional phenotyping.

    View details for DOI 10.1021/acs.analchem.0c02499

    View details for PubMedID 32900183

  • High-Throughput Discovery and Characterization of Human Transcriptional Effectors. Cell Tycko, J. n., DelRosso, N. n., Hess, G. T., Aradhana, n. n., Banerjee, A. n., Mukund, A. n., Van, M. V., Ego, B. K., Yao, D. n., Spees, K. n., Suzuki, P. n., Marinov, G. K., Kundaje, A. n., Bassik, M. C., Bintu, L. n. 2020

    Abstract

    Thousands of proteins localize to the nucleus; however, it remains unclear which contain transcriptional effectors. Here, we develop HT-recruit, a pooled assay where protein libraries are recruited to a reporter, and their transcriptional effects are measured by sequencing. Using this approach, we measure gene silencing and activation for thousands of domains. We find a relationship between repressor function and evolutionary age for the KRAB domains, discover that Homeodomain repressor strength is collinear with Hox genetic organization, and identify activities for several domains of unknown function. Deep mutational scanning of the CRISPRi KRAB maps the co-repressor binding surface and identifies substitutions that improve stability/silencing. By tiling 238 proteins, we find repressors as short as ten amino acids. Finally, we report new activator domains, including a divergent KRAB. These results provide a resource of 600 human proteins containing effectors and demonstrate a scalable strategy for assigning functions to protein domains.

    View details for DOI 10.1016/j.cell.2020.11.024

    View details for PubMedID 33326746