All Publications

  • Volumetric and multispectral DWI near metallic implants using a non-linear phase Carr-Purcell-Meiboom-Gill diffusion preparation. Magnetic resonance in medicine Lee, P. K., Yoon, D., Sandberg, J. K., Vasanawala, S. S., Hargreaves, B. A. 1800


    PURPOSE: DWI near metal implants has not been widely explored due to substantial challenges associated with through-slice and in-plane distortions, the increased encoding requirement of different spectral bins, and limited SNR. There is no widely adopted clinical protocol for DWI near metal since the commonly used EPI trajectory fails completely due to distortion from extreme off-resonance ranging from 2 to 20 kHz. We present a sequence that achieves DWI near metal with moderate b-values (400-500 s/mm2 ) and volumetric coverage in clinically feasible scan times.THEORY AND METHODS: Multispectral excitation with Cartesian sampling, view angle tilting, and kz phase encoding reduce in-plane and through-plane off-resonance artifacts, and Carr-Purcell-Meiboom-Gill (CPMG) spin-echo refocusing trains counteract T2* effects. The effect of random phase on the refocusing train is eliminated using a stimulated echo diffusion preparation. Root-flipped Shinnar-Le Roux refocusing pulses permits preparation of a high spectral bandwidth, which improves imaging times by reducing the number of excitations required to cover the desired spectral range. B1 sensitivity is reduced by using an excitation that satisfies the CPMG condition in the preparation. A method for ADC quantification insensitive to background gradients is presented.RESULTS: Non-linear phase refocusing pulses reduces the peak B1 by 46% which allows RF bandwidth to be doubled. Simulations and phantom experiments show that a non-linear phase CPMG pulse pair reduces B1 sensitivity. Application in vivo demonstrates complementary contrast to conventional multispectral acquisitions and improved visualization compared to DW-EPI.CONCLUSION: Volumetric and multispectral DW imaging near metal can be achieved with a 3D encoded sequence.

    View details for DOI 10.1002/mrm.29153

    View details for PubMedID 35014729

  • Distortion-Free Diffusion Imaging Using Self-Navigated Cartesian Echo-Planar Time Resolved Acquisition and Joint Magnitude and Phase Constrained Reconstruction IEEE TRANSACTIONS ON MEDICAL IMAGING Dai, E., Lee, P. K., Dong, Z., Fu, F., Setsompop, K., McNab, J. A. 2022; 41 (1): 63-74


    Echo-planar time resolved imaging (EPTI) is an effective approach for acquiring high-quality distortion-free images with a multi-shot EPI (ms-EPI) readout. As with traditional ms-EPI acquisitions, inter-shot phase variations present a main challenge when incorporating EPTI into a diffusion-prepared pulse sequence. The aim of this study is to develop a self-navigated Cartesian EPTI-based (scEPTI) acquisition together with a magnitude and phase constrained reconstruction for distortion-free diffusion imaging. A self-navigated Cartesian EPTI-based diffusion-prepared pulse sequence is designed. The different phase components in EPTI diffusion signal are analyzed and an approach to synthesize a fully phase-matched navigator for the inter-shot phase correction is demonstrated. Lastly, EPTI contains richer magnitude and phase information than conventional ms-EPI, such as the magnitude and phase correlations along the temporal dimension. The potential of these magnitude and phase correlations to enhance the reconstruction is explored. The reconstruction results with and without phase matching and with and without phase or magnitude constraints are compared. Compared with reconstruction without phase matching, the proposed phase matching method can improve the accuracy of inter-shot phase correction and reduce signal corruption in the final diffusion images. Magnitude constraints further improve image quality by suppressing the background noise and thereby increasing SNR, while phase constraints can mitigate possible image blurring from adding magnitude constraints. The high-quality distortion-free diffusion images and simultaneous diffusion-relaxometry imaging capacity provided by the proposed EPTI design represent a highly valuable tool for both clinical and neuroscientific assessments of tissue microstructure.

    View details for DOI 10.1109/TMI.2021.3104291

    View details for Web of Science ID 000736740900007

    View details for PubMedID 34383645

  • Clinical utility of accelerated MAVRIC-SL with robust-PCA compared to conventional MAVRIC-SL in evaluation of total hip arthroplasties. Skeletal radiology Doyle, Z., Yoon, D., Lee, P. K., Rosenberg, J., Hargreaves, B. A., Beaulieu, C. F., Stevens, K. J. 2021


    OBJECTIVE: To compare the diagnostic performance of a conventional metal artifact suppression sequence MAVRIC-SL (multi-acquisition variable-resonance image combination selective) and a novel 2.6-fold faster sequence employing robust principal component analysis (RPCA), in the MR evaluation of hip implants at 3T.MATERIALS AND METHODS: Thirty-six total hip implants in 25 patients were scanned at 3T using a conventional MAVRIC-SL proton density-weighted sequence and an RPCA MAVRIC-SL proton density-weighted sequence. Comparison was made of image quality, geometric distortion, visualization around acetabular and femoral components, and conspicuity of abnormal imaging findings using the Wilcoxon signed-rank test and a non-inferiority test. Abnormal findings were correlated with subsequent clinical management and intraoperative findings if the patient underwent subsequent surgery.RESULTS: Mean scores for conventional MAVRIC-SL were better than RPCA MAVRIC-SL for all qualitative parameters (p<0.05), although the probability of RPCA MAVRIC-SL being clinically useful was non-inferior to conventional MAVRIC-SL (within our accepted 10% difference, p<0.05), except for visualization around the acetabular component. Abnormal imaging findings were seen in 25 hips, and either equally visible or visible but less conspicuous on RPCA MAVRIC-SL in 21 out of 25 cases. In 4 cases, a small joint effusion was queried on MAVRIC-SL but not RPCA MAVRIC-SL, but the presence or absence of a small effusion did not affect subsequent clinical management and patient outcome.CONCLUSION: While the overall image quality is reduced, RPCA MAVRIC-SL allows for significantly reduced scan time and maintains almost equal diagnostic performance.

    View details for DOI 10.1007/s00256-021-03848-y

    View details for PubMedID 34223946

  • Flexible and efficient optimization of quantitative sequences using automatic differentiation of Bloch simulations. Magnetic resonance in medicine Lee, P. K., Watkins, L. E., Anderson, T. I., Buonincontri, G., Hargreaves, B. A. 2019


    PURPOSE: To investigate a computationally efficient method for optimizing the Cramer-Rao Lower Bound (CRLB) of quantitative sequences without using approximations or an analytical expression of the signal.METHODS: Automatic differentiation was applied to Bloch simulations and used to optimize several quantitative sequences without the need for approximations or an analytical expression. The results were validated with in vivo measurements and comparisons to prior art. Multi-echo spin echo and DESPO T 1 were used as benchmarks to verify the CRLB implementation. The CRLB of the Magnetic Resonance Fingerprinting (MRF) sequence, which has a complicated analytical formulation, was also optimized using automatic differentiation.RESULTS: The sequence parameters obtained for multi-echo spin echo and DESPO T 1 matched results obtained using conventional methods. In vivo, MRF scans demonstrate that the CRLB optimization obtained with automatic differentiation can improve performance in presence of white noise. For MRF, the CRLB optimization converges in 1.1 CPU hours for N TR = 400 and has O ( N TR ) asymptotic runtime scaling for the calculation of the CRLB objective and gradient.CONCLUSIONS: Automatic differentiation can be used to optimize the CRLB of quantitative sequences without using approximations or analytical expressions. For MRF, the runtime is computationally efficient and can be used to investigate confounding factors as well as MRF sequences with a greater number of repetitions.

    View details for DOI 10.1002/mrm.27832

    View details for PubMedID 31131500