Rafael Schmitt
Research Engineer
Stanford Woods Institute for the Environment
Academic Appointments
-
Sr Research Engineer, Stanford Woods Institute for the Environment
All Publications
-
Dams for hydropower and irrigation: Trends, challenges, and alternatives
RENEWABLE & SUSTAINABLE ENERGY REVIEWS
2024; 199
View details for DOI 10.1016/j.rser.2024.114439
View details for Web of Science ID 001241422400001
-
Offsetting the greenhouse gas footprint of hydropower with floating solar photovoltaics
NATURE SUSTAINABILITY
2024
View details for DOI 10.1038/s41893-024-01384-w
View details for Web of Science ID 001255193200002
-
Strategic restoration-development mitigates tradeoffs between hydropower and fish habitat fragmentation in the Mekong
ONE EARTH
2024; 7 (6)
View details for DOI 10.1016/j.oneear.2024.05.009
View details for Web of Science ID 001259791800001
-
Rethinking energy planning to mitigate the impacts of African hydropower
NATURE SUSTAINABILITY
2024
View details for DOI 10.1038/s41893-024-01367-x
View details for Web of Science ID 001238631400002
-
Influences of Satellite Sensor and Scale on Derivation of Ecosystem Functional Types and Diversity
REMOTE SENSING
2023; 15 (23)
View details for DOI 10.3390/rs15235593
View details for Web of Science ID 001117689400001
-
Move up or move over: mapping opportunities for climate adaptation in Pakistan's Indus plains
ENVIRONMENTAL RESEARCH LETTERS
2023; 18 (11)
View details for DOI 10.1088/1748-9326/acfc59
View details for Web of Science ID 001087014100001
-
Strategic siting and design of dams minimizes impacts on seasonal floodplain inundation
ENVIRONMENTAL RESEARCH LETTERS
2023; 18 (8)
View details for DOI 10.1088/1748-9326/ace122
View details for Web of Science ID 001025150700001
-
Balancing Sediment Connectivity and Energy Production via Optimized Reservoir Sediment Management Strategies
WATER RESOURCES RESEARCH
2023; 59 (6)
View details for DOI 10.1029/2022WR034033
View details for Web of Science ID 001007766600001
-
Centring justice in conceptualizing and improving access to urban nature
PEOPLE AND NATURE
2023
View details for DOI 10.1002/pan3.10470
View details for Web of Science ID 000989379400001
-
Data, knowledge, and modeling challenges for science-informed management of river deltas
ONE EARTH
2023; 6 (3): 216-235
View details for DOI 10.1016/j.oneear.2023.02.010
View details for Web of Science ID 001058485400001
-
Balancing renewable energy and river resources by moving from individual assessments of hydropower projects to energy system planning
FRONTIERS IN ENVIRONMENTAL SCIENCE
2023; 10
View details for DOI 10.3389/fenvs.2022.1036653
View details for Web of Science ID 000923000400001
-
Global expansion of sustainable irrigation limited by water storage.
Proceedings of the National Academy of Sciences of the United States of America
2022; 119 (47): e2214291119
Abstract
Providing affordable and nutritious food to a growing and increasingly affluent global population requires multifaceted approaches to target supply and demand aspects. On the supply side, expanding irrigation is key to increase future food production, yet associated needs for storing water and implications of providing that water storage, remain unknown. Here, we quantify biophysical potentials for storage-fed sustainable irrigation-irrigation that neither depletes freshwater resources nor expands croplands but requires water to be stored before use-and study implications for food security and infrastructure. We find that water storage is crucial for future food systems because 460 km3/yr of sustainable blue water, enough to grow food for 1.15 billion people, can only be used for irrigation after storage. Even if all identified future dams were to contribute water to irrigation, water stored in dammed reservoirs could only supply 209 ± 50 km3/yr to irrigation and grow food for 631 ± 145 million people. In the face of this gap and the major socioecologic externalities from future dams, our results highlight limits of gray infrastructure for future irrigation and urge to increase irrigation efficiency, change to less water-intensive cropping systems, and deploy alternative storage solutions at scale.
View details for DOI 10.1073/pnas.2214291119
View details for PubMedID 36375068
-
Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica
ECOSYSTEM SERVICES
2022; 57
View details for DOI 10.1016/j.ecoser.2022.101470
View details for Web of Science ID 000862222900005
-
Floating solar power: evaluate trade-offs
NATURE
2022; 606 (7913): 246-249
View details for Web of Science ID 000807557600013
View details for PubMedID 35672509
-
Strategic planning of hydropower development: balancing benefits and socioenvironmental costs
CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY
2022; 56
View details for DOI 10.1016/j.cosust.2022.101175
View details for Web of Science ID 000798814600001
-
Restoring Rivers and Floodplains for Habitat and Flood Risk Reduction: Experiences in Multi-Benefit Floodplain Management From California and Germany
FRONTIERS IN ENVIRONMENTAL SCIENCE
2022; 9
View details for DOI 10.3389/fenvs.2021.778568
View details for Web of Science ID 000777704600001
-
Nature-based solutions for flood risk reduction: A probabilistic modeling framework
ONE EARTH
2021; 4 (9): 1310-1321
View details for DOI 10.1016/j.oneear.2021.08.010
View details for Web of Science ID 000697508600001
-
Sediment transport at the network scale and its link to channel morphology in the braided Vjosa River system
EARTH SURFACE PROCESSES AND LANDFORMS
2021
View details for DOI 10.1002/esp.5225
View details for Web of Science ID 000696075900001
-
Strategic basin and delta planning increases the resilience of the Mekong Delta under future uncertainty
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
2021; 118 (36)
Abstract
The climate resilience of river deltas is threatened by rising sea levels, accelerated land subsidence, and reduced sediment supply from contributing river basins. Yet, these uncertain and rapidly changing threats are rarely considered in conjunction. Here we provide an integrated assessment, on basin and delta scales, to identify key planning levers for increasing the climate resilience of the Mekong Delta. We find, first, that 23 to 90% of this unusually productive delta might fall below sea level by 2100, with the large uncertainty driven mainly by future management of groundwater pumping and associated land subsidence. Second, maintaining sediment supply from the basin is crucial under all scenarios for maintaining delta land and enhancing the climate resilience of the system. We then use a bottom-up approach to identify basin development scenarios that are compatible with maintaining sediment supply at current levels. This analysis highlights, third, that strategic placement of hydropower dams will be more important for maintaining sediment supply than either projected increases in sediment yields or improved sediment management at individual dams. Our results demonstrate 1) the need for integrated planning across basin and delta scales, 2) the role of river sediment management as a nature-based solution to increase delta resilience, and 3) global benefits from strategic basin management to maintain resilient deltas, especially under uncertain and changing conditions.
View details for DOI 10.1073/pnas.2026127118
View details for Web of Science ID 000705126700014
View details for PubMedID 34475204
View details for PubMedCentralID PMC8433524
-
Joint strategic energy and river basin planning to reduce dam impacts on rivers in Myanmar
ENVIRONMENTAL RESEARCH LETTERS
2021; 16 (5)
View details for DOI 10.1088/1748-9326/abe329
View details for Web of Science ID 000648118900001
-
Modeling seasonal water yield for landscape management: Applications in Peru and Myanmar.
Journal of environmental management
2020; 270: 110792
Abstract
A common objective of watershed management programs is to secure water supply, especially during the dry season. To develop such programs in contexts of low data and resource availability, program managers need tools to understand the effect of landscape management on the seasonal water balance. However, the performance of simple, parsimonious models is poorly understood. Here, we examine the behavior of a geospatial tool, developed to map monthly water budgets and baseflow contributions and forming part of the InVEST (integrated valuation of ecosystem services and trade-offs) software suite. The model uses monthly climate, topography, and land-use data to compute spatial indices of groundwater recharge, baseflow, and quickflow. We illustrate the model application in two large basins in Peru and Myanmar, where we compare results with observed data and alternative hydrologic models. We show that the spatial distribution of baseflow contributions correlated well with an established model in the Peruvian basin (r2=0.81at the parcel scale). In Myanmar, the model shows an overall satisfactory performance for representing month to month variation (Nash-Sutcliffe-Efficiency 0.6-0.8); however, errors are scale dependent highlighting limitations in representing processes in large basins. Our study highlights modeling challenges, in particular trade-offs between model complexity and accuracy, and illustrates the role that parsimonious models can play to support watershed management programs.
View details for DOI 10.1016/j.jenvman.2020.110792
View details for PubMedID 32721288
-
Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide.
Proceedings of the National Academy of Sciences of the United States of America
2020
Abstract
Dams contribute to water security, energy supply, and flood protection but also fragment habitats of freshwater species. Yet, a global species-level assessment of dam-induced fragmentation is lacking. Here, we assessed the degree of fragmentation of the occurrence ranges of ∼10,000 lotic fish species worldwide due to ∼40,000 existing large dams and ∼3,700 additional future large hydropower dams. Per river basin, we quantified a connectivity index (CI) for each fish species by combining its occurrence range with a high-resolution hydrography and the locations of the dams. Ranges of nondiadromous fish species were more fragmented (less connected) (CI = 73 ± 28%; mean ± SD) than ranges of diadromous species (CI = 86 ± 19%). Current levels of fragmentation were highest in the United States, Europe, South Africa, India, and China. Increases in fragmentation due to future dams were especially high in the tropics, with declines in CI of ∼20 to 40 percentage points on average across the species in the Amazon, Niger, Congo, Salween, and Mekong basins. Our assessment can guide river management at multiple scales and in various domains, including strategic hydropower planning, identification of species and basins at risk, and prioritization of restoration measures, such as dam removal and construction of fish bypasses.
View details for DOI 10.1073/pnas.1912776117
View details for PubMedID 32015125
-
The CASCADE toolbox for analyzing river sediment connectivity and management
ENVIRONMENTAL MODELLING & SOFTWARE
2019; 119: 400–406
View details for DOI 10.1016/j.envsoft.2019.07.008
View details for Web of Science ID 000478965700030
-
Deploy diverse renewables to save tropical rivers
NATURE
2019; 569 (7756): 330–32
View details for Web of Science ID 000468123700020
View details for PubMedID 31092945