
Rajan Plumley
Visiting Physicist, SLAC National Accelerator Laboratory
Bio
I am a PhD Candidate at Carnegie Mellon University and Visiting Physicist at SLAC National Accelerator Laboratory and the Stanford Institute for Materials and Energy Sciences. My research focuses on using state-of-the-art X-ray facilities such as the Linac Coherent Light Source (LCLS) at SLAC to study ultra-fast dynamics in materials. I am especially interested in how X-ray speckle phenomena can be used to understand the role quantum fluctations play in the emergence of novel quantum phases in low-dimensional materials.
Education & Certifications
-
BA, Washington & Jefferson College, Physics (2017)
All Publications
-
Compact hard x-ray split-delay system based on variable-gap channel-cut crystals
OPTICS LETTERS
2019; 44 (10): 2582–85
Abstract
We present the concept and a prototypical implementation of a compact x-ray split-delay system that is capable of performing continuous on-the-fly delay scans over a range of ∼10 ps with sub-100 nanoradian pointing stability. The system consists of four channel-cut silicon crystals, two of which have gradually varying gap sizes from intentional 5 deg asymmetric cuts. The delay adjustment is realized by linear motions of these two monolithic varying-gap channel cuts, where the x-ray beam experiences pairs of anti-parallel reflections, and thus becomes less sensitive in output beam pointing to motion imperfections of the translation stages. The beam splitting is accomplished by polished crystal edges. A high degree of mutual coherence between the two branches at the focus is observed by analyzing small-angle coherent x-ray scattering patterns. We envision a wide range of applications including single-shot x-ray pulse temporal diagnostics, studies of high-intensity x-ray-matter interactions, as well as measurement of dynamics in disordered material systems using split-pulse x-ray photon correlation spectroscopy.
View details for DOI 10.1364/OL.44.002582
View details for Web of Science ID 000467906400050
View details for PubMedID 31090737