Randi Erin Brown
Postdoctoral Scholar, Psychiatry
All Publications
-
Repetitive transcranial magnetic stimulation for post-traumatic stress disorder in adults.
The Cochrane database of systematic reviews
2024; 8: CD015040
Abstract
BACKGROUND: The estimated lifetime prevalence of post-traumatic stress disorder (PTSD) in adults worldwide has been estimated at 3.9%. PTSD appears to contribute to alterations in neuronal network connectivity patterns. Current pharmacological and psychotherapeutic treatments for PTSD are associated with inadequate symptom improvement and high dropout rates. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive therapy involving induction of electrical currents in cortical brain tissue, may be an important treatment option for PTSD to improve remission rates and for people who cannot tolerate existing treatments.OBJECTIVES: To assess the effects of repetitive transcranial magnetic stimulation (rTMS) on post-traumatic stress disorder (PTSD) in adults.SEARCH METHODS: We searched the Cochrane Common Mental Disorders Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and two clinical trials registers. We checked reference lists of relevant articles. The most recent search was January 2023.SELECTION CRITERIA: We included randomized controlled trials (RCTs) assessing the efficacy and safety of rTMS versus sham rTMS for PTSD in adults from any treatment setting, including veterans. Eligible trials employed at least five rTMS treatment sessions with both active and sham conditions. We included trials with combination interventions, where a pharmacological agent or psychotherapy was combined with rTMS for both intervention and control groups. We included studies meeting the above criteria regardless of whether they reported any of our outcomes of interest.DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed the risk of bias in accordance with Cochrane standards. Primary outcomes were PTSD severity immediately after treatment and serious adverse events during active treatment. Secondary outcomes were PTSD remission, PTSD response, PTSD severity at two follow-up time points after treatment, dropouts, and depression and anxiety severity immediately after treatment.MAIN RESULTS: We included 13 RCTs in the review (12 published; 1 unpublished dissertation), with 577 participants. Eight studies included stand-alone rTMS treatment, four combined rTMS with an evidence-based psychotherapeutic treatment, and one investigated rTMS as an adjunctive to treatment-as-usual. Five studies were conducted in the USA, and some predominantly included white, male veterans. Active rTMS probably makes little to no difference to PTSD severity immediately following treatment (standardized mean difference (SMD) -0.14, 95% confidence interval (CI) -0.54 to 0.27; 3 studies, 99 participants; moderate-certainty evidence). We downgraded the certainty of evidence by one level for imprecision (sample size insufficient to detect a difference of medium effect size). We deemed one study as having a low risk of bias and the remaining two as having 'some concerns' for risk of bias. A sensitivity analysis of change-from-baseline scores enabled inclusion of a greater number of studies (6 studies, 252 participants). This analysis yielded a similar outcome to our main analysis but also indicated significant heterogeneity in efficacy across studies, including two studies with a high risk of bias. Reported rates of serious adverse events were low, with seven reported (active rTMS: 6; sham rTMS: 1). The evidence is very uncertain about the effect of active rTMS on serious adverse events (odds ratio (OR) 5.26, 95% CI 0.26 to 107.81; 5 studies, 251 participants; very low-certainty evidence [Active rTMS: 23/1000, sham rTMS: 4/1000]). We downgraded the evidence by one level for risk of bias and two levels for imprecision. We rated four of five studies as having a high risk of bias, and the fifth as 'some concerns' for bias. We were unable to assess PTSD remission immediately after treatment as none of the included studies reported this outcome.AUTHORS' CONCLUSIONS: Based on moderate-certainty evidence, our review suggests that active rTMS probably makes little to no difference to PTSD severity immediately following treatment compared to sham stimulation. However, significant heterogeneity in efficacy was detected when we included a larger number of studies in sensitivity analysis. We observed considerable variety in participant and protocol characteristics across studies included in this review. For example, studies tended to be weighted towards inclusion of either male veterans or female civilians. Studies varied greatly in terms of the proportion of the sample with comorbid depression. Study protocols differed in treatment design and stimulation parameters (e.g. session number/duration, treatment course length, stimulation intensity/frequency, location of stimulation). These differences may affect efficacy, particularly when considering interactions with participant factors. Reported rates of serious adverse events were very low (< 1%) across active and sham conditions. It is uncertain whether rTMS increases the risk of serious adverse event occurrence, as our certainty of evidence was very low. Studies frequently lacked clear definitions for serious adverse events, as well as detail on tracking/assessment of data and information on the safety population. Increased reporting on these elements would likely aid the advancement of both research and clinical recommendations of rTMS for PTSD. Currently, there is insufficient evidence to meta-analyze PTSD remission, PTSD treatment response, and PTSD severity at different periods post-treatment. Further research into these outcomes could inform the clinical use of rTMS. Additionally, the relatively large contribution of data from trials that focused on white male veterans may limit the generalizability of our conclusions. This could be addressed by prioritizing recruitment of more diverse participant samples.
View details for DOI 10.1002/14651858.CD015040.pub2
View details for PubMedID 39092744
-
Magnesium-ibogaine therapy in veterans with traumatic brain injuries.
Nature medicine
2024
Abstract
Traumatic brain injury (TBI) is a leading cause of disability. Sequelae can include functional impairments and psychiatric syndromes such as post-traumatic stress disorder (PTSD), depression and anxiety. Special Operations Forces (SOF) veterans (SOVs) may be at an elevated risk for these complications, leading some to seek underexplored treatment alternatives such as the oneirogen ibogaine, a plant-derived compound known to interact with multiple neurotransmitter systems that has been studied primarily as a treatment for substance use disorders. Ibogaine has been associated with instances of fatal cardiac arrhythmia, but coadministration of magnesium may mitigate this concern. In the present study, we report a prospective observational study of the Magnesium-Ibogaine: the Stanford Traumatic Injury to the CNS protocol (MISTIC), provided together with complementary treatment modalities, in 30 male SOVs with predominantly mild TBI. We assessed changes in the World Health Organization Disability Assessment Schedule from baseline to immediately (primary outcome) and 1month (secondary outcome) after treatment. Additional secondary outcomes included changes in PTSD (Clinician-Administered PTSD Scale for DSM-5), depression (Montgomery-Asberg Depression Rating Scale) and anxiety (Hamilton Anxiety Rating Scale). MISTIC resulted in significant improvements in functioning both immediately (Pcorrected<0.001, Cohen's d=0.74) and 1month (Pcorrected< 0.001, d=2.20) after treatment and in PTSD (Pcorrected<0.001, d=2.54), depression (Pcorrected<0.001, d=2.80) and anxiety (Pcorrected<0.001, d=2.13) at 1month after treatment. There were no unexpected or serious adverse events. Controlled clinical trials to assess safety and efficacy are needed to validate these initial open-label findings. ClinicalTrials.gov registration: NCT04313712 .
View details for DOI 10.1038/s41591-023-02705-w
View details for PubMedID 38182784
-
IBOGAINETREATMENT INCOMBAT VETERANS SIGNIFICANTLY IMPROVESSLEEP,BEYOND ALLEVIATING POSTTRAUMATICSTRESS DISORDERSYMPTOMS
OXFORD UNIV PRESS INC. 2023
View details for DOI 10.1093/sleep/zsad077.0665
View details for Web of Science ID 001008232900662
-
Electrophysiological and behavioral effects of unilateral and bilateral rTMS; A randomized clinical trial on rumination and depression.
Journal of affective disorders
2022
Abstract
BACKGROUND: Rumination is significantly frequent in major depressive disorder (MDD). However, not a lot of studies have investigated the effects of repetitive transcranial magnetic stimulation (rTMS) on rumination.METHODS: 61 participants with a minimum Hamilton Depression Rating Scale (HAM-D) score of 20 were randomly assigned to sham, bilateral stimulation (BS) or unilateral stimulation (US) groups. EEG, The Ruminative Response Scale (RRS), and HAM-D were administered before and after the 20 sessions of rTMS. Phase locked values (PLV) were calculated as a measure of connectivity.RESULTS: There was a significant decrease in HAM-D scores in both BS and US. In responders, BS and US differed significantly in RRS total scores, with greater reduction in BS. PLV significantly changed in the default mode network (DMN) in delta, theta, alpha, and beta in BS, in responders of which PLV decreased in the DMN in beta and gamma. Positive correlations between PLV and brooding in delta and theta, and negative correlations between PLV and reflection were found in theta, alpha, and beta. In US, connectivity in the DMN increased in beta, and PLV increased in theta and beta, and decreased in alpha and beta in its responders. Positive correlations between PLV and brooding in the delta and theta, as well as negative correlations between PLV and reflection in theta were observed in the DMN.CONCLUSION: US and BS resulted in different modulations in the DMN, however, both could alleviate both rumination and depression. Reductions in the beta and alpha frequency bands in the DMN can be considered as potential EEG-based markers of response to bilateral and unilateral rTMS, respectively.
View details for DOI 10.1016/j.jad.2022.08.098
View details for PubMedID 36055535
-
Stanford Neuromodulation Therapy (SNT): A Double-Blind Randomized Controlled Trial.
The American journal of psychiatry
2021: appiajp202120101429
Abstract
OBJECTIVE: Depression is the leading cause of disability worldwide, and half of patients with depression have treatment-resistant depression. Intermittent theta-burst stimulation (iTBS) is approved by the U.S. Food and Drug Administration for the treatment of treatment-resistant depression but is limited by suboptimal efficacy and a 6-week duration. The authors addressed these limitations by developing a neuroscience-informed accelerated iTBS protocol, Stanford neuromodulation therapy (SNT; previously referred to as Stanford accelerated intelligent neuromodulation therapy, or SAINT). This protocol was associated with a remission rate of 90% after 5 days of open-label treatment. Here, the authors report the results of a sham-controlled double-blind trial of SNT for treatment-resistant depression.METHODS: Participants with treatment-resistant depression currently experiencing moderate to severe depressive episodes were randomly assigned to receive active or sham SNT. Resting-state functional MRI was used to individually target the region of the left dorsolateral prefrontal cortex most functionally anticorrelated with the subgenual anterior cingulate cortex. The primary outcome was score on the Montgomery-Asberg Depression Rating Scale (MADRS) 4 weeks after treatment.RESULTS: At the planned interim analysis, 32 participants with treatment-resistant depression had been enrolled, and 29 participants who continued to meet inclusion criteria received either active (N=14) or sham (N=15) SNT. The mean percent reduction from baseline in MADRS score 4 weeks after treatment was 52.5% in the active treatment group and 11.1% in the sham treatment group.CONCLUSIONS: SNT, a high-dose iTBS protocol with functional-connectivity-guided targeting, was more effective than sham stimulation for treatment-resistant depression. Further trials are needed to determine SNT's durability and to compare it with other treatments.
View details for DOI 10.1176/appi.ajp.2021.20101429
View details for PubMedID 34711062