Professional Education


  • Doctor of Philosophy, Indian Institute of Science (2019)
  • Master of Science, University Of Calcutta (2012)
  • Bachelor of Science, University Of Calcutta (2010)

Stanford Advisors


All Publications


  • New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nature communications Chang, S. E., Feng, A., Meng, W., Apostolidis, S. A., Mack, E., Artandi, M., Barman, L., Bennett, K., Chakraborty, S., Chang, I., Cheung, P., Chinthrajah, S., Dhingra, S., Do, E., Finck, A., Gaano, A., GeSSner, R., Giannini, H. M., Gonzalez, J., Greib, S., Gundisch, M., Hsu, A. R., Kuo, A., Manohar, M., Mao, R., Neeli, I., Neubauer, A., Oniyide, O., Powell, A. E., Puri, R., Renz, H., Schapiro, J., Weidenbacher, P. A., Wittman, R., Ahuja, N., Chung, H., Jagannathan, P., James, J. A., Kim, P. S., Meyer, N. J., Nadeau, K. C., Radic, M., Robinson, W. H., Singh, U., Wang, T. T., Wherry, E. J., Skevaki, C., Luning Prak, E. T., Utz, P. J. 2021; 12 (1): 5417

    Abstract

    COVID-19 is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. Here we develop three protein arrays to measure IgG autoantibodies associated with connective tissue diseases, anti-cytokine antibodies, and anti-viral antibody responses in serum from 147 hospitalized COVID-19 patients. Autoantibodies are identified in approximately 50% of patients but in less than 15% of healthy controls. When present, autoantibodies largely target autoantigens associated with rare disorders such as myositis, systemic sclerosis and overlap syndromes. A subset of autoantibodies targeting traditional autoantigens or cytokines develop de novo following SARS-CoV-2 infection. Autoantibodies track with longitudinal development of IgG antibodies recognizing SARS-CoV-2 structural proteins and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.

    View details for DOI 10.1038/s41467-021-25509-3

    View details for PubMedID 34521836

  • CD8+ T cells specific for conserved coronavirus epitopes correlate with milder disease in COVID-19 patients. Science immunology Mallajosyula, V., Ganjavi, C., Chakraborty, S., McSween, A. M., Pavlovitch-Bedzyk, A. J., Wilhelmy, J., Nau, A., Manohar, M., Nadeau, K. C., Davis, M. M. 2021; 6 (61)

    Abstract

    A central feature of the SARS-CoV-2 pandemic is that some individuals become severely ill or die, whereas others have only a mild disease course or are asymptomatic. Here we report development of an improved multimeric alphabeta T cell staining reagent platform, with each maxi-ferritin "spheromer" displaying 12 peptide-MHC complexes. Spheromers stain specific T cells more efficiently than peptide-MHC tetramers and capture a broader portion of the sequence repertoire for a given peptide-MHC. Analyzing the response in unexposed individuals, we find that T cells recognizing peptides conserved amongst coronaviruses are more abundant and tend to have a "memory" phenotype, compared to those unique to SARS-CoV-2. Significantly, CD8+ T cells with these conserved specificities are much more abundant in COVID-19 patients with mild disease versus those with a more severe illness, suggesting a protective role.

    View details for DOI 10.1126/sciimmunol.abg5669

    View details for PubMedID 34210785

  • SARS-CoV-2 vaccines in advanced clinical trials: where do we stand. Advanced drug delivery reviews Chakraborty, S. n., Mallajosyula, V. n., Tato, C. M., Tan, G. S., Wang, T. T. 2021

    Abstract

    The ongoing SARS-CoV-2 pandemic has led to the focused application of resources and scientific expertise toward the goal of developing investigational vaccines to prevent COVID-19. The highly collaborative global efforts by private industry, governments and non-governmental organizations have resulted in a number of SARS-CoV-2 vaccine candidates moving to Phase III trials in a period of only months since the start of the pandemic. In this review, we provide an overview of the preclinical and clinical data on SARS-CoV-2 vaccines that are currently in Phase III clinical trials and in few cases authorized for emergency use. We further discuss relevant vaccine platforms and provide a discussion of SARS-CoV-2 antigens that may be targeted to increase the breadth and durability of vaccine responses.

    View details for DOI 10.1016/j.addr.2021.01.014

    View details for PubMedID 33482248

    View details for PubMedCentralID PMC7816567

  • Proinflammatory IgG Fc structures in patients with severe COVID-19 Nature Immunology Chakraborty, S., Gonzales, J., Edwards, K., Mallajosyulla, V., Buzzanco, A. S., Sherwood, R., Buffone, C., Kathale, N., Providenza, S., Xie, M. M., Andrews, J. R., Blish, C. A., Singh, U., Dugan, H., Wilson, P. C., Pham, T. D., Boyd, S. D., Nadeau, K. C., Pinsky, B. A., Zhang, S., Memoli, M. J., Taubenberger, J. K., Morales, T., Schapiro, J. M., Tan, G. S., et al 2020
  • Symptomatic SARS-CoV-2 infections display specific IgG Fc structures. medRxiv : the preprint server for health sciences Chakraborty, S. n., Edwards, K. n., Buzzanco, A. S., Memoli, M. J., Sherwood, R. n., Mallajosyula, V. n., Xie, M. M., Gonzalez, J. n., Buffone, C. n., Kathale, N. n., Providenza, S. n., Jagannathan, P. n., Andrews, J. R., Blish, C. A., Krammer, F. n., Dugan, H. n., Wilson, P. C., Pham, T. D., Boyd, S. D., Zhang, S. n., Taubenberger, J. K., Morales, T. n., Schapiro, J. M., Parsonnet, J. n., Wang, T. T. 2020

    Abstract

    The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a public health crisis that is exacerbated by our poor understanding of correlates of immunity. SARS-CoV-2 infection can cause Coronavirus Disease 2019 (COVID-19), with a spectrum of symptoms ranging from asymptomatic carriage to life threatening pneumonia and cytokine dysregulation [1-3]. Although antibodies have been shown in a variety of in vitro assays to promote coronavirus infections through mechanisms requiring interactions between IgG antibodies and Fc gamma receptors (FcγRs), the relevance of these observations to coronavirus infections in humans is not known [4-7]. In light of ongoing clinical trials examining convalescent serum therapy for COVID-19 patients and expedited SARS-CoV-2 vaccine testing in humans, it is essential to clarify the role of antibodies in the pathogenesis of COVID-19. Here we show that adults with PCR-diagnosed COVID-19 produce IgG antibodies with a specific Fc domain repertoire that is characterized by reduced fucosylation, a modification that enhances interactions with the activating FcγR, FcγRIIIa. Fc fucosylation was reduced when compared with SARS-CoV-2-seropositive children and relative to adults with symptomatic influenza virus infections. These results demonstrate an antibody correlate of symptomatic SARS-CoV-2 infections in adults and have implications for novel therapeutic strategies targeting FcγRIIIa pathways.

    View details for DOI 10.1101/2020.05.15.20103341

    View details for PubMedID 32511463

    View details for PubMedCentralID PMC7252581