Professional Education


  • Doctor of Philosophy, University Of Western Australia (2019)
  • Bachelor of Science, James Cook University (2013)
  • Bachelor of Science, University Of Western Australia (2014)

Stanford Advisors


All Publications


  • Cryptic habitat use of white sharks in kelp forest revealed by animal-borne video. Biology letters Jewell, O. J., Gleiss, A. C., Jorgensen, S. J., Andrzejaczek, S., Moxley, J. H., Beatty, S. J., Wikelski, M., Block, B. A., Chapple, T. K. 2019; 15 (4): 20190085

    Abstract

    Traditional forms of marine wildlife research are often restricted to coarse telemetry or surface-based observations, limiting information on fine-scale behaviours such as predator-prey events and interactions with habitat features. We use contemporary animal-attached cameras with motion sensing dataloggers, to reveal novel behaviours by white sharks, Carcharodon carcharias, within areas of kelp forest in South Africa. All white sharks tagged in this study spent time adjacent to kelp forests, with several moving throughout densely kelp-covered areas, navigating through channels and pushing directly through stipes and fronds. We found that activity and turning rates significantly increased within kelp forest. Over 28 h of video data revealed that white shark encounters with Cape fur seals, Arctocephalus pusillus pusillus, occurred exclusively within kelp forests, with seals displaying predator evasion behaviour during those encounters. Uniquely, we reveal the use of kelp forest habitat by white sharks, previously assumed inaccessible to these large predators.

    View details for PubMedID 30940023

  • First Insights Into the Fine-Scale Movements of the Sandbar Shark, Carcharhinus plumbeus FRONTIERS IN MARINE SCIENCE Andrzejaczek, S., Gleiss, A. C., Pattiaratchi, C. B., Meekan, M. G. 2018; 5
  • Temperature and the vertical movements of oceanic whitetip sharks, Carcharhinus longimanus SCIENTIFIC REPORTS Andrzejaczek, S., Gleiss, A. C., Jordan, L. B., Pattiaratchi, C. B., Howey, L. A., Brooks, E. J., Meekan, M. G. 2018; 8: 8351

    Abstract

    Large-bodied pelagic ectotherms such as sharks need to maintain internal temperatures within a favourable range in order to maximise performance and be cost-efficient foragers. This implies that behavioural thermoregulation should be a key feature of the movements of these animals, although field evidence is limited. We used depth and temperature archives from pop-up satellite tags to investigate the role of temperature in driving vertical movements of 16 oceanic whitetip sharks, Carcharhinus longimanus, (OWTs). Spectral analysis, linear mixed modelling, segmented regression and multivariate techniques were used to examine the effect of mean sea surface temperature (SST) and mixed layer depth on vertical movements. OWTs continually oscillated throughout the upper 200 m of the water column. In summer when the water column was stratified with high SSTs, oscillations increased in amplitude and cycle length and sharks reduced the time spent in the upper 50 m. In winter when the water column was cooler and well-mixed, oscillations decreased in amplitude and cycle length and sharks frequently occupied the upper 50 m. SSTs of 28 oC marked a distinct change in vertical movements and the onset of thermoregulation strategies. Our results have implications for the ecology of these animals in a warming ocean.

    View details for DOI 10.1038/s41598-018-26485-3

    View details for Web of Science ID 000433291300054

    View details for PubMedID 29844605

    View details for PubMedCentralID PMC5974137

  • The ecological connectivity of whale shark aggregations in the Indian Ocean: a photo-identification approach ROYAL SOCIETY OPEN SCIENCE Andrzejaczek, S., Meeuwig, J., Rowat, D., Pierce, S., Davies, T., Fisher, R., Meekan, M. 2016; 3 (11): 160455

    Abstract

    Genetic and modelling studies suggest that seasonal aggregations of whale sharks (Rhincodon typus) at coastal sites in the tropics may be linked by migration. Here, we used photo-identification (photo-ID) data collected by both citizen scientists and researchers to assess the connectedness of five whale shark aggregation sites across the entire Indian Ocean at timescales of up to a decade. We used the semi-automated program I3S (Individual Interactive Identification System) to compare photographs of the unique natural marking patterns of individual whale sharks collected from aggregations at Mozambique, the Seychelles, the Maldives, Christmas Island (Australia) and Ningaloo Reef (Australia). From a total of 6519 photos, we found no evidence of connectivity of whale shark aggregations at ocean-basin scales within the time frame of the study and evidence for only limited connectivity at regional (hundreds to thousands of kilometres) scales. A male whale shark photographed in January 2010 at Mozambique was resighted eight months later in the Seychelles and was the only one of 1724 individuals in the database to be photographed at more than one site. On average, 35% of individuals were resighted at the same site in more than one year. A Monte Carlo simulation study showed that the power of this photo-ID approach to document patterns of emigration and immigration was strongly dependent on both the number of individuals identified in aggregations and the size of resident populations.

    View details for DOI 10.1098/rsos.160455

    View details for Web of Science ID 000389244400021

    View details for PubMedID 28018629

    View details for PubMedCentralID PMC5180127