All Publications


  • 3D electronic implants in subretinal space: Long-term follow-up in rodents. Biomaterials Bhuckory, M. B., Wang, B. Y., Chen, Z. C., Shin, A., Pham-Howard, D., Shah, S., Monkongpitukkul, N., Galambos, L., Kamins, T., Mathieson, K., Palanker, D. 2024; 311: 122674

    Abstract

    Clinical results with photovoltaic subretinal prosthesis (PRIMA) demonstrated restoration of sight via electrical stimulation of the interneurons in degenerated retina, with resolution matching the 100 μm pixel size. Since scaling the pixels below 75 μm in the current bipolar planar geometry will significantly limit the penetration depth of the electric field and increase stimulation threshold, we explore the possibility of using smaller pixels based on a novel 3-dimensional honeycomb-shaped design. We assessed the long-term biocompatibility and stability of these arrays in rats by investigating the anatomical integration of the retina with flat and 3D implants and response to electrical stimulation over lifetime - up to 32-36 weeks post-implantation in aged rats. With both flat and 3D implants, signals elicited in the visual cortex decreased after the day of implantation by more than 3-fold, and gradually recovered over the next 12-16 weeks. With 25 μm high honeycomb walls, the majority of bipolar cells migrate into the wells, while amacrine and ganglion cells remain above the cavities, which is essential for selective network-mediated stimulation of the retina. Retinal thickness and full-field stimulation threshold with 40 μm-wide honeycomb pixels were comparable to those with planar devices - 0.05 mW/mm2 with 10 ms pulses. However, fewer cells from the inner nuclear layer migrated into the 20 μm-wide wells, and stimulation threshold increased over 12-16 weeks, before stabilizing at about 0.08 mW/mm2. Such threshold is still significantly lower than 1.8 mW/mm2 with a previous design of flat bipolar pixels, confirming the promise of the 3D honeycomb-based approach to high resolution subretinal prosthesis.

    View details for DOI 10.1016/j.biomaterials.2024.122674

    View details for PubMedID 38897028

  • Enhancing Prosthetic Vision by Upgrade of a Subretinal Photovoltaic Implant in situ. bioRxiv : the preprint server for biology Bhuckory, M. B., Monkongpitukkul, N., Shin, A., Goldstein, A. K., Jensen, N., Shah, S. V., Pham-Howard, D., Butt, E., Dalal, R., Galambos, L., Mathieson, K., Kamins, T., Palanker, D. 2024

    Abstract

    In patients with atrophic age-related macular degeneration, subretinal photovoltaic implant (PRIMA) provided visual acuity up to 20/440, matching its 100mum pixels size. Next-generation implants with smaller pixels should significantly improve the acuity. This study in rats evaluates removal of a subretinal implant, replacement with a newer device, and the resulting grating acuity in-vivo. Six weeks after the initial implantation with planar and 3-dimensional devices, the retina was re-detached, and the devices were successfully removed. Histology demonstrated a preserved inner nuclear layer. Re-implantation of new devices into the same location demonstrated retinal re-attachment to a new implant. New devices with 22mum pixels increased the grating acuity from the 100mum capability of PRIMA implants to 28mum, reaching the limit of natural resolution in rats. Reimplanted devices exhibited the same stimulation threshold as for the first implantation of the same implants in a control group. This study demonstrates the feasibility of safely upgrading the subretinal photovoltaic implants to improve prosthetic visual acuity.

    View details for DOI 10.1101/2024.04.15.589465

    View details for PubMedID 38659843

  • Three-dimensional electro-neural interfaces electroplated on subretinal prostheses. Journal of neural engineering Butt, E., Wang, B. Y., Shin, A., Chen, Z. C., Bhuckory, M., Shah, S., Galambos, L., Kamins, T., Palanker, D., Mathieson, K. 2024

    Abstract

    High-resolution retinal prosthetics offer partial sight restoration to patients blinded by retinal degenerative diseases through electrical stimulation of remaining neurons. Decreasing pixel size enables increasing prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue. We investigated 3-dimensional structures on top of photovoltaic arrays for enhanced penetration of the electric field, permitting higher resolution implants. Approach. 3D COMSOL models of subretinal photovoltaic arrays were developed to accurately quantify the electrodynamics during stimulation and verified through comparison to flat photovoltaic arrays. Models were applied to optimize the design of 3D electrode structures (pillars and honeycombs). Return electrodes on honeycomb walls vertically align the electric field with bipolar cells for optimal stimulation. Pillars elevate the active electrode improving proximity to target neurons. The optimized 3D structures were electroplated onto existing flat subretinal prostheses based on modelling results. Main results. Simulations demonstrate that despite exposed conductive sidewalls, charge mostly flows via high-capacitance sputtered Iridium Oxide films topping the 3D structures. The 24 µm height of honeycomb structures was optimized for integration with the inner nuclear layers cells in the rat retina, whilst 35 µm tall pillars were optimized for penetrating the debris layer in human patients. Implantation of released 3D arrays demonstrates mechanical robustness with histology demonstrating successful integration of 3D structures with the rat retina in-vivo. Significance. Electroplated 3D honeycomb structures produce vertically oriented electric fields, providing low stimulation thresholds, high spatial resolution, and contrast for pixel sizes down to 20 µm. Pillar electrodes offer alternatives for extending past debris layers. Electroplating of 3D structures is compatible with the fabrication process of flat photovoltaic arrays, enabling much more efficient stimulation. .

    View details for DOI 10.1088/1741-2552/ad2a37

    View details for PubMedID 38364290

  • Three-dimensional electro-neural interfaces electroplated on subretinal prostheses. bioRxiv : the preprint server for biology Butt, E., Wang, B., Shin, A., Chen, Z. C., Bhuckory, M., Shah, S., Galambos, L., Kamins, T., Palanker, D., Mathieson, K. 2023

    Abstract

    Objective: High-resolution retinal prosthetics offer partial restoration of sight to patients blinded by retinal degenerative diseases through electrical stimulation of the remaining neurons. Decreasing the pixel size enables an increase in prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue. We investigate 3-dimensional structures on top of the photovoltaic arrays for enhanced penetration of electric field to permit higher-resolution implants.Approach: We developed 3D COMSOL models of subretinal photovoltaic arrays that accurately quantify the device electrodynamics during stimulation and verified it experimentally through comparison with the standard (flat) photovoltaic arrays. The models were then applied to optimise the design of 3D electrode structures (pillars and honeycombs) to efficiently stimulate the inner retinal neurons. The return electrodes elevated on top of the honeycomb walls surrounding each pixel orient the electric field inside the cavities vertically, aligning it with bipolar cells for optimal stimulation. Alternatively, pillars elevate the active electrode into the inner nuclear layer, improving proximity to the target neurons. Modelling results informed a microfabrication process of electroplating the 3D electrode structures on top of the existing flat subretinal prosthesis.Main results: Simulations demonstrate that despite the conductive sidewalls of the 3D electrodes being exposed to electrolyte, most of the charge flows via the high-capacitance sputtered Iridium Oxide film that caps the top of the 3D structures. The 24 m height of the electroplated honeycomb structures was optimised for integration with the inner nuclear layer cells in rat retina, while 35 m height of the pillars was optimized for penetrating the debris layer in human patients. Release from the wafer and implantation of the 3D arrays demonstrated that they are mechanically robust to withstand the associated forces. Histology demonstrated successful integration of the 3D structures with the rat retina in-vivo.Significance: Electroplated 3D honeycomb structures produce a vertically oriented electric field that offers low stimulation threshold, high spatial resolution and high contrast for the retinal implants with pixel sizes down to 20m in width. Pillar electrodes offer an alternative configuration for extending the stimulation past the debris layers. Electroplating of the 3D structures is compatible with the fabrication process of the flat photovoltaic arrays, thereby enabling much more efficient stimulation than in their original flat configuration.

    View details for DOI 10.1101/2023.11.09.566003

    View details for PubMedID 38014082

  • 3D electronic implants in subretinal space: long-term follow-up in rodents. bioRxiv : the preprint server for biology Bhuckory, M., Wang, B. Y., Chen, Z. C., Shin, A., Pham-Howard, D., Shah, S., Monkongpitukkul, N., Galambos, L., Kamins, T., Mathieson, K., Palanker, D. 2023

    Abstract

    Photovoltaic subretinal prosthesis (PRIMA) enables restoration of sight via electrical stimulation of the interneurons in degenerated retina, with resolution limited by the 100 μm pixel size. Since decreasing the pixel size below 75 μm in the current bipolar geometry is impossible, we explore the possibility of using smaller pixels based on a novel 3-dimensional honeycomb-shaped design. We assessed the long-term biocompatibility and stability of these arrays in rats by investigating the anatomical integration of the retina with flat and 3D implants and response to electrical stimulation over lifetime - up to 9 months post-implantation in aged rats. With both flat and 3D implants, VEP amplitude decreased after the day of implantation by more than 3-fold, and gradually recovered over about 3 months. With 25 µm high honeycomb walls, the majority of bipolar cells migrate into the wells, while amacrine and ganglion cells remain above the cavities, which is essential for selective network-mediated stimulation of the second-order neurons. Retinal thickness and full-field stimulation threshold with 40 µm-wide honeycomb pixels were comparable to those with planar devices - 0.05 mW/mm2 with 10ms pulses. However, fewer cells from the inner nuclear layer migrated into the 20 µm-wide wells, and stimulation threshold increased over 5 months, before stabilizing at about 0.08 mW/mm2. Such threshold is significantly lower than 1.8 mW/mm2 with a previous design of flat bipolar pixels, confirming the promise of the 3D honeycomb-based approach to high resolution subretinal prosthesis.

    View details for DOI 10.1101/2023.07.25.550561

    View details for PubMedID 37546971

    View details for PubMedCentralID PMC10402070