Bio
I am a theorist working on problems in gravitational, high energy and condensed matter physics. In recent years the holographic correspondence, the physics of quantum entanglement and quantum field theory more generally have led to strong connections between central concerns in these different fields.
For example, I am interested in understanding the emergence of spacetime from large N matrix quantum mechanics models. These can be thought of as the simplest models of holographic duality, and will likely hold the key to understanding the emergence of local physics as well as black holes. The most basic object in these theories is the ground state wavefunction. Understanding this wavefunction is a manybody problem and I am interested in using modern ideas from condensed matter theory  such as topological order  to characterize it.
Another example has to do with dissipation. How quickly can a quantum mechanical system thermalize itself? From this perspective, there are remarkable similarities between strongly quantum mechanical systems such as the quarkgluon plasma and high temperature superconductors and the dynamics of black holes in classical gravity. This may suggest that a fundamental limitation imposed by quantum statistical mechanics is at work in these systems. I have pursued this possibility from many angles, including variational principles for entropy production, the LiebRobinson bound on velocities in quantum systems and bounds on the magnitude of quantum fluctuations near thermal equilibrium.
In parallel to a ''bird's eye'' approach to quantum statistical mechanics, I am also increasingly interested in specific scattering mechanisms in unconventional materials that may give a relatively simple explanation of transport behavior that has otherwise been considered anomalous  using this approach my collaborators and I have 'demystified' aspects of transport in quantum critical ruthenate materials. I am currently interested, for example, in the role of phonons in strongly correlated electronic systems.
I have recently worked on black hole interiors in classical gravity. Black hole interiors are extremely rich mathematically, but their physical interpretation  for example in a holographic context  remains obscure. To start to address this question I have shown how important dynamics of the interior, such as the instability of the singularity and of Cauchy horizons, can be triggered in a relatively simple holographic setting.
Lists of my publications and of recorded talks and lectures can be found following the links on the right.
Academic Appointments

Associate Professor, Physics

Principal Investigator, Stanford Institute for Materials and Energy Sciences
Administrative Appointments

Assistant Professor, Stanford University (2010  2015)

Postdoctoral Fellow, Harvard University (2008  2011)

Postdoctoral Fellow, Kavli Institute for Theoretical Physics, Santa Barbara (2006  2008)

Junior Research Fellow, Clare College, Cambridge (2004  2006)
Honors & Awards

Simons Investigator, Simons Foundation (2019)

New Horizons in Physics Prize, Fundamental Physics Prize Foundation (2014)

Presidential Early Career Award (PECASE), Department of Energy (2014)

Early Career Award, Department of Energy (2012)

Alfred P. Sloan Fellowship, Sloan Foundation (2011)

Terman Fellowship, Stanford (2011)
Professional Education

PhD, Cambridge University, Theoretical Physics (2005)

Part III, Cambridge University, Theoretical Physics (2001)

BA, Cambridge University, Mathematics (2000)
202021 Courses

Independent Studies (4)
 Independent Research and Study
PHYSICS 190 (Aut, Win, Spr)  Research
PHYSICS 490 (Aut, Win, Spr, Sum)  Senior Thesis Research
PHYSICS 205 (Aut, Win, Spr)  Writing of Original Research for Engineers
ENGR 199W (Aut, Spr)
 Independent Research and Study

Prior Year Courses
201920 Courses
 Light and Heat
PHYSICS 45 (Aut)  Light and Heat Laboratory
PHYSICS 46 (Aut)
201819 Courses
 Light and Heat
PHYSICS 45 (Aut)  Light and Heat Laboratory
PHYSICS 46 (Aut)
201718 Courses
 Advanced Mechanics
PHYSICS 110, PHYSICS 210 (Aut)  Quantum Mechanics II
PHYSICS 131 (Spr)
 Light and Heat
Stanford Advisees

Doctoral Dissertation Reader (AC)
Caleb Cook, Yudan Guo, Brandon Rayhaun, Milind Shyani, Jun Ho Son 
Postdoctoral Faculty Sponsor
Raghu Mahajan, Joaquin Rodriguez Nieva 
Doctoral Dissertation Advisor (AC)
Alexander Frenkel 
Doctoral (Program)
Eli Fox, Jordan O'Neal, TJ Wilkason