Current Role at Stanford


I consider myself an innovation enabler and workflow optimization enthusiast. At Stanford 3D and Quantitative Imaging Lab, I work closely with healthcare providers, researchers, and educators to enable effective health visualization. Recent innovations are of particular interest to me; such as 3D Printing, immersive volumetric visualization, clinical implementation of validated AI algorithms, and the general concept of reporting concise changes over time.

All Publications


  • EGFR-targeted intraoperative fluorescence imaging detects high-grade glioma with panitumumab-IRDye800 in a phase 1 clinical trial Theranostics Zhou, Q., van den Berg, N. S., Rosenthal, E. L., Iv, M., Zhang, M., Vega Leonel, J. C., Walters, S., Nishio, N., Granucci, M., Raymundo, R., Yi, G., Vogel, H., Cayrol, R., Lee, Y., Lu, G., Hom, M., Kang, W., Hayden Gephart, M., Recht, L. D., Nagpal, S., Thomas, R. P., Patel, C. B., Grant, G. A., Li, G. 2021; 11 (15): 7130-7143

    View details for DOI 10.7150/thno.60582

  • The utility of three-dimensional models in complex microsurgical reconstruction. Archives of plastic surgery Ogunleye, A. A., Deptula, P. L., Inchauste, S. M., Zelones, J. T., Walters, S. n., Gifford, K. n., LeCastillo, C. n., Napel, S. n., Fleischmann, D. n., Nguyen, D. H. 2020; 47 (5): 428–34

    Abstract

    Three-dimensional (3D) model printing improves visualization of anatomical structures in space compared to two-dimensional (2D) data and creates an exact model of the surgical site that can be used for reference during surgery. There is limited evidence on the effects of using 3D models in microsurgical reconstruction on improving clinical outcomes.A retrospective review of patients undergoing reconstructive breast microsurgery procedures from 2017 to 2019 who received computed tomography angiography (CTA) scans only or with 3D models for preoperative surgical planning were performed. Preoperative decision-making to undergo a deep inferior epigastric perforator (DIEP) versus muscle-sparing transverse rectus abdominis myocutaneous (MS-TRAM) flap, as well as whether the decision changed during flap harvest and postoperative complications were tracked based on the preoperative imaging used. In addition, we describe three example cases showing direct application of 3D mold as an accurate model to guide intraoperative dissection in complex microsurgical reconstruction.Fifty-eight abdominal-based breast free-flaps performed using conventional CTA were compared with a matched cohort of 58 breast free-flaps performed with 3D model print. There was no flap loss in either group. There was a significant reduction in flap harvest time with use of 3D model (CTA vs. 3D, 117.7±14.2 minutes vs. 109.8±11.6 minutes; P=0.001). In addition, there was no change in preoperative decision on type of flap harvested in all cases in 3D print group (0%), compared with 24.1% change in conventional CTA group.Use of 3D print model improves accuracy of preoperative planning and reduces flap harvest time with similar postoperative complications in complex microsurgical reconstruction.

    View details for DOI 10.5999/aps.2020.00829

    View details for PubMedID 32971594

  • Magnetic resonance-guided focused ultrasound treatment of extra-abdominal desmoid tumors: a retrospective multicenter study EUROPEAN RADIOLOGY Ghanouni, P., Dobrotwir, A., Bazzocchi, A., Bucknor, M., Bitton, R., Rosenberg, J., Telischak, K., Busacca, M., Ferrari, S., Albisinni, U., Walters, S., Gold, G., Ganjoo, K., Napoli, A., Pauly, K. B., Avedian, R. 2017; 27 (2): 732-740

    Abstract

    To assess the feasibility, safety and preliminary efficacy of magnetic resonance-guided focused ultrasound (MRgFUS) for the treatment of extra-abdominal desmoid tumours.Fifteen patients with desmoid fibromatosis (six males, nine females; age range, 7-66 years) were treated with MRgFUS, with seven patients requiring multiple treatments (25 total treatments). Changes in viable and total tumour volumes were measured after treatment. Efficacy was evaluated using an exact one-sided Wilcoxon test to determine if the median reduction in viable tumour measured immediately after initial treatment exceeded a threshold of 50 % of the targeted volume. Median decrease after treatment of at least two points in numerical rating scale (NRS) worst and average pain scores was tested with an exact one-sided Wilcoxon test. Adverse events were recorded.After initial MRgFUS treatment, median viable targeted tumour volume decreased 63 %, significantly beyond our efficacy threshold (P = 0.0013). Median viable total tumour volume decreased (105 mL [interquartile range {IQR}, 217 mL] to 54 mL [IQR, 92 mL]) and pain improved (worst scores, 7.5 ± 1.9 vs 2.7 ± 2.6, P = 0.027; average scores, 6 ± 2.3 vs 1.3 ± 2, P = 0.021). Skin burn was the most common complication.MRgFUS significantly and durably reduced viable tumour volume and pain in this series of 15 patients with extra-abdominal desmoid fibromatosis.• Retrospective four-centre study shows MRgFUS safely and effectively treats extra-abdominal desmoid tumours • This non-invasive procedure can eradicate viable tumour in some cases • Alternatively, MRgFUS can provide durable control of tumour growth through repeated treatments • Compared to surgery or radiation, MRgFUS has relatively mild side effects.

    View details for DOI 10.1007/s00330-016-4376-5

    View details for Web of Science ID 000392142000034

  • Rapid MR venography in children using a blood pool contrast agent and multi-station fat-water-separated volumetric imaging PEDIATRIC RADIOLOGY Ghanouni, P., Walters, S. G., Vasanawala, S. S. 2012; 42 (2): 242-248

    Abstract

    A rapid, reliable radiation-free method of pediatric body venography might complement US by evaluating veins in the abdomen and pelvis and by providing a global depiction of venous anatomy. We describe a MR venography technique utilizing gadofosveset, a blood pool contrast agent, in children. The technique allows high-spatial-resolution imaging of the veins from the diaphragm to the knees in less than 15 min of total exam time.

    View details for DOI 10.1007/s00247-011-2254-5

    View details for Web of Science ID 000301664100015

    View details for PubMedID 21989981

    View details for PubMedCentralID PMC3288576