Shuhan Liu
Ph.D. Student in Electrical Engineering, admitted Autumn 2020
All Publications
-
Design Guidelines for Oxide Semiconductor Gain Cell Memory on a Logic Platform
IEEE TRANSACTIONS ON ELECTRON DEVICES
2024
View details for DOI 10.1109/TED.2024.3372938
View details for Web of Science ID 001205833400001
-
Author Correction: High-speed and large-scale intrinsically stretchable integrated circuits.
Nature
2024
View details for DOI 10.1038/s41586-024-07416-x
View details for PubMedID 38839971
-
High-speed and large-scale intrinsically stretchable integrated circuits.
Nature
2024; 627 (8003): 313-320
Abstract
Intrinsically stretchable electronics with skin-like mechanical properties have been identified as a promising platform for emerging applications ranging from continuous physiological monitoring to real-time analysis of health conditions, to closed-loop delivery of autonomous medical treatment1-7. However, current technologies could only reach electrical performance at amorphous-silicon level (that is, charge-carrier mobility of about 1cm2V-1s-1), low integration scale (for example, 54 transistors per circuit) and limited functionalities8-11. Here we report high-density, intrinsically stretchable transistors and integrated circuits with high driving ability, high operation speed and large-scale integration. They were enabled by a combination of innovations in materials, fabrication process design, device engineering and circuit design. Our intrinsically stretchable transistors exhibit an average field-effect mobility of more than 20cm2V-1s-1 under 100% strain, a device density of 100,000 transistors per cm2, including interconnects and a high drive current of around 2muAmum-1 at a supply voltage of 5V. Notably, these achieved parameters are on par with state-of-the-art flexible transistors based on metal-oxide, carbon nanotube and polycrystalline silicon materials on plastic substrates12-14. Furthermore, we realize a large-scale integrated circuit with more than 1,000 transistors and a stage-switching frequency greater than 1MHz, for the first time, to our knowledge, in intrinsically stretchable electronics. Moreover, we demonstrate a high-throughput braille recognition system that surpasses human skin sensing ability, enabled by an active-matrix tactile sensor array with a record-high density of 2,500 units per cm2, and a light-emitting diode display with a high refreshing speed of 60Hz and excellent mechanical robustness. The above advancements in device performance have substantially enhanced the abilities of skin-like electronics.
View details for DOI 10.1038/s41586-024-07096-7
View details for PubMedID 38480964
-
Hybrid 2T nMOS/pMOS Gain Cell Memory With Indium-Tin-Oxide and Carbon Nanotube MOSFETs for Counteracting Capacitive Coupling
IEEE ELECTRON DEVICE LETTERS
2024; 45 (2): 188-191
View details for DOI 10.1109/LED.2023.3344370
View details for Web of Science ID 001173363300012
-
Monolithic optical microlithography of high-density elastic circuits.
Science (New York, N.Y.)
2021; 373 (6550): 88-94
Abstract
Polymeric electronic materials have enabled soft and stretchable electronics. However, the lack of a universal micro/nanofabrication method for skin-like and elastic circuits results in low device density and limited parallel signal recording and processing ability relative to silicon-based devices. We present a monolithic optical microlithographic process that directly micropatterns a set of elastic electronic materials by sequential ultraviolet light-triggered solubility modulation. We fabricated transistors with channel lengths of 2 micrometers at a density of 42,000 transistors per square centimeter. We fabricated elastic circuits including an XOR gate and a half adder, both of which are essential components for an arithmetic logic unit. Our process offers a route to realize wafer-level fabrication of complex, high-density, and multilayered elastic circuits with performance rivaling that of their rigid counterparts.
View details for DOI 10.1126/science.abh3551
View details for PubMedID 34210882