All Publications


  • Glycocalyx dysregulation impairs blood-brain barrier in ageing and disease. Nature Shi, S. M., Suh, R. J., Shon, D. J., Garcia, F. J., Buff, J. K., Atkins, M., Li, L., Lu, N., Sun, B., Luo, J., To, N. S., Cheung, T. H., McNerney, M. W., Heiman, M., Bertozzi, C. R., Wyss-Coray, T. 2025

    Abstract

    The blood-brain barrier (BBB) is highly specialized to protect the brain from harmful circulating factors in the blood and maintain brain homeostasis1,2. The brain endothelial glycocalyx layer, a carbohydrate-rich meshwork composed primarily of proteoglycans, glycoproteins and glycolipids that coats the BBB lumen, is a key structural component of the BBB3,4. This layer forms the first interface between the blood and brain vasculature, yet little is known about its composition and roles in supporting BBB function in homeostatic and diseased states. Here we find that the brain endothelial glycocalyx is highly dysregulated during ageing and neurodegenerative disease. We identify significant perturbation in an underexplored class of densely O-glycosylated proteins known as mucin-domain glycoproteins. We demonstrate that ageing- and disease-associated aberrations in brain endothelial mucin-domain glycoproteins lead to dysregulated BBB function and, in severe cases, brain haemorrhaging in mice. Finally, we demonstrate that we can improve BBB function and reduce neuroinflammation and cognitive deficits in aged mice by restoring core 1 mucin-type O-glycans to the brain endothelium using adeno-associated viruses. Cumulatively, our findings provide a detailed compositional and structural mapping of the ageing brain endothelial glycocalyx layer and reveal important consequences of ageing- and disease-associated glycocalyx dysregulation on BBB integrity and brain health.

    View details for DOI 10.1038/s41586-025-08589-9

    View details for PubMedID 40011765

    View details for PubMedCentralID 4597316

  • Unraveling protein dynamics to understand the brain - the next molecular frontier. Molecular neurodegeneration Brewer, K. D., Shi, S. M., Wyss-Coray, T. 2022; 17 (1): 45

    Abstract

    The technological revolution to measure global gene expression at the single-cell level is currently transforming our knowledge of the brain and neurological diseases, leading from a basic understanding of genetic regulators and risk factors to one of more complex gene interactions and biological pathways. Looking ahead, our next challenge will be the reliable measurement and understanding of proteins. We describe in this review how to apply new, powerful methods of protein labeling, tracking, and detection. Recent developments of these methods now enable researchers to uncover protein mechanisms in vivo that may previously have only been hypothesized. These methods are also useful for discovering new biology because how proteins regulate systemic interactions is not well understood in most cases, such as how they travel through the bloodstream to distal targets or cross the blood-brain barrier. Genetic sequencing of DNA and RNA have enabled many great discoveries in the past 20years, and now, the protein methods described here are creating a more complete picture of how cells to whole organisms function. It is likely that these developments will generate another transformation in biomedical research and our understanding of the brain and will ultimately allow for patient-specific medicine on a protein level.

    View details for DOI 10.1186/s13024-022-00546-8

    View details for PubMedID 35717317

  • The Role of Alcohol Dehydrogenase in Drug Metabolism: Beyond Ethanol Oxidation. The AAPS journal Di, L. n., Balesano, A. n., Jordan, S. n., Shi, S. M. 2021; 23 (1): 20

    Abstract

    Alcohol dehydrogenases (ADHs) are most known for their roles in oxidation and elimination of ethanol. Although less known, ADHs also play a critical role in the metabolism of a number of drugs and metabolites that contain alcohol functional groups, such as abacavir (HIV/AIDS), hydroxyzine (antihistamine), and ethambutol (antituberculosis). ADHs consist of 7 gene family numbers and several genetic polymorphic forms. ADHs are cytosolic enzymes that are most abundantly found in the liver, although also present in other tissues including gastrointestinal tract and adipose. Marked species differences exist for ADHs including genes, proteins, enzymatic activity, and tissue distribution. The active site of ADHs is relatively small and cylindrical in shape. This results in somewhat narrow substrate specificity. Secondary alcohols are generally poor substrates for ADHs. In vitro-in vivo correlations for ADHs have not been established, partly due to insufficient clinical data. Fomepizole (4-methylpyrazole) is a nonspecific ADH inhibitor currently being used as an antidote for the treatment of methanol and ethylene glycol poisoning. Fomepizole also has the potential to treat intoxication of other substances of abuse by inhibiting ADHs to prevent formation of toxic metabolites. ADHs are inducible through farnesoid X receptor (FXR) and other transcription factors. Drug-drug interactions have been observed in the clinic for ADHs between ethanol and therapeutic drugs, and between fomepizole and ADH substrates. Future research in this area will provide additional insights about this class of complex, yet fascinating enzymes.

    View details for DOI 10.1208/s12248-020-00536-y

    View details for PubMedID 33415501