Education & Certifications


  • Master of Science, University of Cambridge, Physics (2018)
  • Bachelor of Arts, University of Cambridge, Natural Sciences (2018)

All Publications


  • Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): an international, paired, non-inferiority, confirmatory study. The Lancet. Oncology Saha, A., Bosma, J. S., Twilt, J. J., van Ginneken, B., Bjartell, A., Padhani, A. R., Bonekamp, D., Villeirs, G., Salomon, G., Giannarini, G., Kalpathy-Cramer, J., Barentsz, J., Maier-Hein, K. H., Rusu, M., Rouvière, O., van den Bergh, R., Panebianco, V., Kasivisvanathan, V., Obuchowski, N. A., Yakar, D., Elschot, M., Veltman, J., Fütterer, J. J., de Rooij, M., Huisman, H. 2024

    Abstract

    Artificial intelligence (AI) systems can potentially aid the diagnostic pathway of prostate cancer by alleviating the increasing workload, preventing overdiagnosis, and reducing the dependence on experienced radiologists. We aimed to investigate the performance of AI systems at detecting clinically significant prostate cancer on MRI in comparison with radiologists using the Prostate Imaging-Reporting and Data System version 2.1 (PI-RADS 2.1) and the standard of care in multidisciplinary routine practice at scale.In this international, paired, non-inferiority, confirmatory study, we trained and externally validated an AI system (developed within an international consortium) for detecting Gleason grade group 2 or greater cancers using a retrospective cohort of 10 207 MRI examinations from 9129 patients. Of these examinations, 9207 cases from three centres (11 sites) based in the Netherlands were used for training and tuning, and 1000 cases from four centres (12 sites) based in the Netherlands and Norway were used for testing. In parallel, we facilitated a multireader, multicase observer study with 62 radiologists (45 centres in 20 countries; median 7 [IQR 5-10] years of experience in reading prostate MRI) using PI-RADS (2.1) on 400 paired MRI examinations from the testing cohort. Primary endpoints were the sensitivity, specificity, and the area under the receiver operating characteristic curve (AUROC) of the AI system in comparison with that of all readers using PI-RADS (2.1) and in comparison with that of the historical radiology readings made during multidisciplinary routine practice (ie, the standard of care with the aid of patient history and peer consultation). Histopathology and at least 3 years (median 5 [IQR 4-6] years) of follow-up were used to establish the reference standard. The statistical analysis plan was prespecified with a primary hypothesis of non-inferiority (considering a margin of 0·05) and a secondary hypothesis of superiority towards the AI system, if non-inferiority was confirmed. This study was registered at ClinicalTrials.gov, NCT05489341.Of the 10 207 examinations included from Jan 1, 2012, through Dec 31, 2021, 2440 cases had histologically confirmed Gleason grade group 2 or greater prostate cancer. In the subset of 400 testing cases in which the AI system was compared with the radiologists participating in the reader study, the AI system showed a statistically superior and non-inferior AUROC of 0·91 (95% CI 0·87-0·94; p<0·0001), in comparison to the pool of 62 radiologists with an AUROC of 0·86 (0·83-0·89), with a lower boundary of the two-sided 95% Wald CI for the difference in AUROC of 0·02. At the mean PI-RADS 3 or greater operating point of all readers, the AI system detected 6·8% more cases with Gleason grade group 2 or greater cancers at the same specificity (57·7%, 95% CI 51·6-63·3), or 50·4% fewer false-positive results and 20·0% fewer cases with Gleason grade group 1 cancers at the same sensitivity (89·4%, 95% CI 85·3-92·9). In all 1000 testing cases where the AI system was compared with the radiology readings made during multidisciplinary practice, non-inferiority was not confirmed, as the AI system showed lower specificity (68·9% [95% CI 65·3-72·4] vs 69·0% [65·5-72·5]) at the same sensitivity (96·1%, 94·0-98·2) as the PI-RADS 3 or greater operating point. The lower boundary of the two-sided 95% Wald CI for the difference in specificity (-0·04) was greater than the non-inferiority margin (-0·05) and a p value below the significance threshold was reached (p<0·001).An AI system was superior to radiologists using PI-RADS (2.1), on average, at detecting clinically significant prostate cancer and comparable to the standard of care. Such a system shows the potential to be a supportive tool within a primary diagnostic setting, with several associated benefits for patients and radiologists. Prospective validation is needed to test clinical applicability of this system.Health~Holland and EU Horizon 2020.

    View details for DOI 10.1016/S1470-2045(24)00220-1

    View details for PubMedID 38876123

  • Computational Detection of Extraprostatic Extension of Prostate Cancer on Multiparametric MRI Using Deep Learning. Cancers Moroianu, S. L., Bhattacharya, I., Seetharaman, A., Shao, W., Kunder, C. A., Sharma, A., Ghanouni, P., Fan, R. E., Sonn, G. A., Rusu, M. 2022; 14 (12)

    Abstract

    The localization of extraprostatic extension (EPE), i.e., local spread of prostate cancer beyond the prostate capsular boundary, is important for risk stratification and surgical planning. However, the sensitivity of EPE detection by radiologists on MRI is low (57% on average). In this paper, we propose a method for computational detection of EPE on multiparametric MRI using deep learning. Ground truth labels of cancers and EPE were obtained in 123 patients (38 with EPE) by registering pre-surgical MRI with whole-mount digital histopathology images from radical prostatectomy. Our approach has two stages. First, we trained deep learning models using the MRI as input to generate cancer probability maps both inside and outside the prostate. Second, we built an image post-processing pipeline that generates predictions for EPE location based on the cancer probability maps and clinical knowledge. We used five-fold cross-validation to train our approach using data from 74 patients and tested it using data from an independent set of 49 patients. We compared two deep learning models for cancer detection: (i) UNet and (ii) the Correlated Signature Network for Indolent and Aggressive prostate cancer detection (CorrSigNIA). The best end-to-end model for EPE detection, which we call EPENet, was based on the CorrSigNIA cancer detection model. EPENet was successful at detecting cancers with extraprostatic extension, achieving a mean area under the receiver operator characteristic curve of 0.72 at the patient-level. On the test set, EPENet had 80.0% sensitivity and 28.2% specificity at the patient-level compared to 50.0% sensitivity and 76.9% specificity for the radiologists. To account for spatial location of predictions during evaluation, we also computed results at the sextant-level, where the prostate was divided into sextants according to standard systematic 12-core biopsy procedure. At the sextant-level, EPENet achieved mean sensitivity 61.1% and mean specificity 58.3%. Our approach has the potential to provide the location of extraprostatic extension using MRI alone, thus serving as an independent diagnostic aid to radiologists and facilitating treatment planning.

    View details for DOI 10.3390/cancers14122821

    View details for PubMedID 35740487

  • The acoustic resonant drag instability with a spectrum of grain sizes MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Squire, J., Moroianu, S., Hopkins, P. F. 2022; 510 (1): 110-130
  • Intensity Normalization of Prostate MRIs using Conditional Generative Adversarial Networks for Cancer Detection DeSilvio, T., Moroianu, S., Bhattacharya, I., Seetharaman, A., Sonn, G., Rusu, M., Mazurowski, M. A., Drukker, K. SPIE-INT SOC OPTICAL ENGINEERING. 2021

    View details for DOI 10.1117/12.2582297

    View details for Web of Science ID 000672800100016

  • Detecting Invasive Breast Carcinoma on Dynamic Contrast-Enhanced MRI Moroianu, S. L., Rusu, M., Mazurowski, M. A., Drukker, K. SPIE-INT SOC OPTICAL ENGINEERING. 2021

    View details for DOI 10.1117/12.2580989

    View details for Web of Science ID 000672800100012