Clinical Focus

  • Pediatrics
  • Oncology

Academic Appointments

Administrative Appointments

  • Division Chief, Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine (2020 - Present)
  • Director, Bass Center for Childhood Cancer and Blood Diseases, Lucile Packard Children’s Hospital, Stanford (2020 - Present)
  • Associate Director, Childhood Cancer, Stanford Cancer Institute (2020 - Present)

Professional Education

  • Fellowship: Childrens Hospital Los Angeles Hematology Oncology Fellowship (2009) CA
  • Residency: Children's Hospital Los Angeles Pediatric Residency (2006) CA
  • Medical Education: University of Southern California (2003) CA
  • Board Certification: American Board of Pediatrics, Pediatric Hematology-Oncology (2001)

Clinical Trials

  • A Trial of Epigenetic Priming in Patients With Newly Diagnosed Acute Myeloid Leukemia Recruiting

    The overall aim of this study is to determine if epigenetic priming with a DNA methyltransferase inhibitor (DMTi) prior to chemotherapy blocks is tolerable and carries evidence of a clinical efficacy signal as determined by minimal residual disease (MRD), event-free survival (EFS), and overall survival (OS). Tolerability for each of the agents, as well as total reduction in DNA methylation and outcome assessments will be done to simultaneously obtain preliminary biological and clinical data for each DMTi in parallel. PRIMARY OBJECTIVES: - Evaluate the tolerability of five days of epigenetic priming with azacitidine and decitabine as a single agent DMTi prior to standard AML chemotherapy blocks. - Evaluate the change in genome-wide methylation burden induced by five days of epigenetic priming and the association of post-priming genome-wide methylation burden with event-free survival among pediatric AML patients. SECONDARY OBJECTIVES - Describe minimal residual disease levels following Induction I chemotherapy in patients that receive DMTi. - Estimate the event-free survival and overall survival of patients receiving a DMTi prior to chemotherapy courses.

    View full details

  • Total Therapy for Infants With Acute Lymphoblastic Leukemia (ALL) I Recruiting

    The purpose of this study is to test the good and bad effects of the study drugs bortezomib and vorinostat when they are given in combination with chemotherapy commonly used to treat acute lymphoblastic leukemia (ALL) in infants. For example, adding these drugs could decrease the number of leukemia cells, but it could also cause additional side effects. Bortezomib and vorinostat have been approved by the US Food and Drug Administration (FDA) to treat other cancers in adults, but they have not been approved for treating children with leukemia. With this research, we plan to meet the following goals: PRIMARY OBJECTIVE: - Determine the tolerability of incorporating bortezomib and vorinostat into an ALL chemotherapy backbone for newly diagnosed infants with ALL. SECONDARY OBJECTIVES: - Estimate the event-free survival and overall survival of infants with ALL who are treated with bortezomib and vorinostat in combination with an ALL chemotherapy backbone. - Measure minimal residual disease (MRD) positivity using both flow cytometry and PCR. - Compare end of induction, end of consolidation, and end of reinduction MRD levels to Interfant99 ( registration ID number NCT00015873) participant outcomes.

    View full details

2020-21 Courses

All Publications

  • DNA Methylation Clusters and Their Relation to Cytogenetic Features in Pediatric AML. Cancers Lamba, J. K., Cao, X., Raimondi, S., Downing, J., Ribeiro, R., Gruber, T. A., Rubnitz, J., Pounds, S. 2020; 12 (10)


    Acute Myeloid Leukemia (AML) is characterized by recurrent genetic and cytogenetic lesions that are utilized for risk stratification and for making treatment decisions. In recent years, methylation dysregulation has been extensively studied and associated with risk groups and prognosis in adult AML, however, such studies in pediatric AML are limited. Moreover, the mutations in epigenetic genes such as DNMT3A, IDH1 or IDH2 are almost absent or rare in pediatric patients as compared to their abundance in adult AML. In the current study, we evaluated methylation patterns that occur with or independent of the well-defined cytogenetic features in pediatric AML patients enrolled on multi-site AML02 clinical trial (NCT00136084). Our results demonstrate that unlike adult AML, cytosine DNA methylation does not result in significant unique clusters in pediatric AML, however, DNA methylation signatures correlated significantly with the most common and recurrent cytogenetic features. Paired evaluation of DNA methylation and expression identified genes and pathways of biological relevance that hold promise for novel therapeutic strategies. Our results further demonstrate that epigenetic signatures occur complimentary to the well-established chromosomal/mutational landscape, implying that dysregulation of oncogenes or tumor suppressors might be leveraging both genetic and epigenetic mechanisms to impact biological pathways critical for leukemogenesis.

    View details for DOI 10.3390/cancers12103024

    View details for PubMedID 33080932

  • The genomic landscape of juvenile myelomonocytic leukemia NATURE GENETICS Stieglitz, E., Taylor-Weiner, A. N., Chang, T. Y., Gelston, L. C., Wang, Y., Mazor, T., Esquivel, E., Yu, A., Seepo, S., Olsen, S. R., Rosenberg, M., Archambeault, S. L., Abusin, G., Beckman, K., Brown, P. A., Briones, M., Carcamo, B., Cooper, T., Dahl, G. V., Emanuel, P. D., Fluchel, M. N., Goyal, R. K., Hayashi, R. J., Hitzler, J., Hugge, C., Liu, Y. L., Messinger, Y. H., Mahoney, D. H., Monteleone, P., Nemecek, E. R., Roehrs, P. A., Schore, R. J., Stine, K. C., Takemoto, C. M., Toretsky, J. A., Costello, J. F., Olshen, A. B., Stewart, C., Li, Y., Ma, J., Gerbing, R. B., Alonzo, T. A., Getz, G., Gruber, T. A., Golub, T. R., Stegmaier, K., Loh, M. L. 2015; 47 (11): 1326-?


    Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm (MPN) of childhood with a poor prognosis. Mutations in NF1, NRAS, KRAS, PTPN11 or CBL occur in 85% of patients, yet there are currently no risk stratification algorithms capable of predicting which patients will be refractory to conventional treatment and could therefore be candidates for experimental therapies. In addition, few molecular pathways aside from the RAS-MAPK pathway have been identified that could serve as the basis for such novel therapeutic strategies. We therefore sought to genomically characterize serial samples from patients at diagnosis through relapse and transformation to acute myeloid leukemia to expand knowledge of the mutational spectrum in JMML. We identified recurrent mutations in genes involved in signal transduction, splicing, Polycomb repressive complex 2 (PRC2) and transcription. Notably, the number of somatic alterations present at diagnosis appears to be the major determinant of outcome.

    View details for DOI 10.1038/ng.3400

    View details for PubMedID 26457647