Stanford Advisors

All Publications

  • Nanoscale morphological evolution of monocrystalline Pt surfaces during cathodic corrosion PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Arulmozhi, N., Hersbach, T. P., Koper, M. M. 2020; 117 (51): 32267–77


    This paper studies the cathodic corrosion of a spherical single crystal of platinum in an aqueous alkaline electrolyte, to map out the detailed facet dependence of the corrosion structures forming during this still largely unexplored electrochemical phenomenon. We find that anisotropic corrosion of the platinum electrode takes place in different stages. Initially, corrosion etch pits are formed, which reflect the local symmetry of the surface: square pits on (100) facets, triangular pits on (111) facets, and rectangular pits on (110) facets. We hypothesize that these etch pits are formed through a ternary metal hydride corrosion intermediate. In contrast to anodic corrosion, the (111) facet corrodes the fastest, and the (110) facet corrodes the slowest. For cathodic corrosion on the (100) facet and on higher-index surfaces close to the (100) plane, the etch pit destabilizes in a second growth stage, by etching faster in the (111) direction, leading to arms in the etch pit, yielding a concave octagon-shaped pit. In a third growth stage, these arms develop side arms, leading to a structure that strongly resembles a self-similar diffusion-limited growth pattern, with strongly preferred growth directions.

    View details for DOI 10.1073/pnas.2017086117

    View details for Web of Science ID 000601315200017

    View details for PubMedID 33288700

    View details for PubMedCentralID PMC7768681

  • Enhancement Effect of Noble Metals on Manganese Oxide for the Oxygen Evolution Reaction JOURNAL OF PHYSICAL CHEMISTRY LETTERS Seitz, L. C., Hersbach, T. J., Nordlund, D., Jaramillo, T. F. 2015; 6 (20): 4178-4183


    Developing improved catalysts for the oxygen evolution reaction (OER) is key to the advancement of a number of renewable energy technologies, including solar fuels production and metal air batteries. In this study, we employ electrochemical methods and synchrotron techniques to systematically investigate interactions between metal oxides and noble metals that lead to enhanced OER catalysis for water oxidation. In particular, we synthesize porous MnOx films together with nanoparticles of Au, Pd, Pt, or Ag and observe significant improvement in activity for the combined catalysts. Soft X-ray absorption spectroscopy (XAS) shows that increased activity correlates with increased Mn oxidation states to 4+ under OER conditions compared to bare MnOx, which exhibits minimal OER current and remains in a 3+ oxidation state. Thickness studies of bare MnOx films and of MnOx films deposited on Au nanoparticles reveal trends suggesting that the enhancement in activity arises from interfacial sites between Au and MnOx.

    View details for DOI 10.1021/acs.jpclett.5b01928

    View details for Web of Science ID 000363083900031