Professional Education


  • Bachelor of Arts, Northwestern University (2005)
  • Doctor of Philosophy, University of California Los Angeles (2013)

Stanford Advisors


All Publications


  • Large-Scale Fluorescence Calcium-Imaging Methods for Studies of Long-Term Memory in Behaving Mammals COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY Jercog, P., Rogerson, T., Schnitzer, M. J. 2016; 8 (5)

    Abstract

    During long-term memory formation, cellular and molecular processes reshape how individual neurons respond to specific patterns of synaptic input. It remains poorly understood how such changes impact information processing across networks of mammalian neurons. To observe how networks encode, store, and retrieve information, neuroscientists must track the dynamics of large ensembles of individual cells in behaving animals, over timescales commensurate with long-term memory. Fluorescence Ca(2+)-imaging techniques can monitor hundreds of neurons in behaving mice, opening exciting avenues for studies of learning and memory at the network level. Genetically encoded Ca(2+) indicators allow neurons to be targeted by genetic type or connectivity. Chronic animal preparations permit repeated imaging of neural Ca(2+) dynamics over multiple weeks. Together, these capabilities should enable unprecedented analyses of how ensemble neural codes evolve throughout memory processing and provide new insights into how memories are organized in the brain.

    View details for DOI 10.1101/cshperspect.a021824

    View details for Web of Science ID 000377084600005

    View details for PubMedID 27048190

  • Molecular and Cellular Mechanisms for Trapping and Activating Emotional Memories. PloS one Rogerson, T., Jayaprakash, B., Cai, D. J., Sano, Y., Lee, Y., Zhou, Y., Bekal, P., Deisseroth, K., Silva, A. J. 2016; 11 (8)

    Abstract

    Recent findings suggest that memory allocation to specific neurons (i.e., neuronal allocation) in the amygdala is not random, but rather the transcription factor cAMP-response element binding protein (CREB) modulates this process, perhaps by regulating the transcription of channels that control neuronal excitability. Here, optogenetic studies in the mouse lateral amygdala (LA) were used to demonstrate that CREB and neuronal excitability regulate which neurons encode an emotional memory. To test the role of CREB in memory allocation, we overexpressed CREB in the lateral amygdala to recruit the encoding of an auditory-fear conditioning (AFC) memory to a subset of neurons. Then, post-training activation of these neurons with Channelrhodopsin-2 was sufficient to trigger recall of the memory for AFC, suggesting that CREB regulates memory allocation. To test the role of neuronal excitability in memory allocation, we used a step function opsin (SFO) to transiently increase neuronal excitability in a subset of LA neurons during AFC. Post-training activation of these neurons with Volvox Channelrhodopsin-1 was able to trigger recall of that memory. Importantly, our studies show that activation of the SFO did not affect AFC by either increasing anxiety or by strengthening the unconditioned stimulus. Our findings strongly support the hypothesis that CREB regulates memory allocation by modulating neuronal excitability.

    View details for DOI 10.1371/journal.pone.0161655

    View details for PubMedID 27579481