Academic Appointments


Administrative Appointments


  • Assistant Professor of Cognitive Psychology, Stanford University (2018 - Present)
  • Postdoctoral Associate, Massachusetts Institute of Technology (2014 - 2018)
  • Postdoctoral Fellow, Massachusetts Institute of Technology (2013 - 2014)

Professional Education


  • PhD, University College London, Cognitive Science (2013)
  • MSc, University College London, Cognitive and Decision Sciences (2008)
  • Vordiplom, Humboldt University Berlin, Psychology (2007)

Stanford Advisees


All Publications


  • Quantitative causal selection patterns in token causation. PloS one Morris, A., Phillips, J., Gerstenberg, T., Cushman, F. 2019; 14 (8): e0219704

    Abstract

    When many events contributed to an outcome, people consistently judge some more causal than others, based in part on the prior probabilities of those events. For instance, when a tree bursts into flames, people judge the lightning strike more of a cause than the presence of oxygen in the air-in part because oxygen is so common, and lightning strikes are so rare. These effects, which play a major role in several prominent theories of token causation, have largely been studied through qualitative manipulations of the prior probabilities. Yet, there is good reason to think that people's causal judgments are on a continuum-and relatively little is known about how these judgments vary quantitatively as the prior probabilities change. In this paper, we measure people's causal judgment across parametric manipulations of the prior probabilities of antecedent events. Our experiments replicate previous qualitative findings, and also reveal several novel patterns that are not well-described by existing theories.

    View details for DOI 10.1371/journal.pone.0219704

    View details for PubMedID 31369584

  • Time in Causal Structure Learning JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION Bramley, N. R., Gerstenberg, T., Mayrhofer, R., Lagnado, D. A. 2018; 44 (12): 1880–1910

    Abstract

    A large body of research has explored how the time between two events affects judgments of causal strength between them. In this article, we extend this work in 4 experiments that explore the role of temporal information in causal structure induction with multiple variables. We distinguish two qualitatively different types of information: The order in which events occur, and the temporal intervals between those events. We focus on one-shot learning in Experiment 1. In Experiment 2, we explore how people integrate evidence from multiple observations of the same causal device. Participants' judgments are well predicted by a Bayesian model that rules out causal structures that are inconsistent with the observed temporal order, and favors structures that imply similar intervals between causally connected components. In Experiments 3 and 4, we look more closely at participants' sensitivity to exact event timings. Participants see three events that always occur in the same order, but the variability and correlation between the timings of the events is either more consistent with a chain or a fork structure. We show, for the first time, that even when order cues do not differentiate, people can still make accurate causal structure judgments on the basis of interval variability alone. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

    View details for PubMedID 29745682

  • What's fair? How children assign reward to members of teams with differing causal structures COGNITION Koskuba, K., Gerstenberg, T., Gordon, H., Lagnado, D., Schlottmann, A. 2018; 177: 234–48

    Abstract

    How do children reward individual members of a team that has just won or lost a game? We know that from pre-school age, children consider agents' performance when allocating reward. Here we assess whether children can go further and appreciate performance in context: The same pattern of performance can contribute to a team outcome in different ways, depending on the underlying rule framework. Two experiments, with three age groups (4/5-year-olds, 6/7-year-olds, and adults), varied performance of team members, with the same performance patterns considered under three different game rules for winning or losing. These three rules created distinct underlying causal structures (additive, conjunctive, disjunctive), for how individual performance affected the overall team outcome. Even the youngest children differentiated between different game rules in their reward allocations. Rather than only rewarding individual performance, or whether the team won/lost, children were sensitive to the team structure and how players' performance contributed to the win/loss under each of the three game rules. Not only do young children consider it fair to allocate resources based on merit, but they are also sensitive to the causal structure of the situation which dictates how individual contributions combine to determine the team outcome.

    View details for PubMedID 29723779

  • Lucky or clever? From expectations to responsibility judgments COGNITION Gerstenberg, T., Ullman, T. D., Nagel, J., Kleiman-Weiner, M., Lagnado, D. A., Tenenbaum, J. B. 2018; 177: 122–41

    Abstract

    How do people hold others responsible for the consequences of their actions? We propose a computational model that attributes responsibility as a function of what the observed action reveals about the person, and the causal role that the person's action played in bringing about the outcome. The model first infers what type of person someone is from having observed their action. It then compares a prior expectation of how a person would behave with a posterior expectation after having observed the person's action. The model predicts that a person is blamed for negative outcomes to the extent that the posterior expectation is lower than the prior, and credited for positive outcomes if the posterior is greater than the prior. We model the causal role of a person's action by using a counterfactual model that considers how close the action was to having been pivotal for the outcome. The model captures participants' responsibility judgments to a high degree of quantitative accuracy across three experiments that cover a range of different situations. It also solves an existing puzzle in the literature on the relationship between action expectations and responsibility judgments. Whether an unexpected action yields more or less credit depends on whether the action was diagnostic for good or bad future performance.

    View details for PubMedID 29677593

  • Eye-Tracking Causality. Psychological science Gerstenberg, T., Peterson, M. F., Goodman, N. D., Lagnado, D. A., Tenenbaum, J. B. 2017; 28 (12): 1731–44

    Abstract

    How do people make causal judgments? What role, if any, does counterfactual simulation play? Counterfactual theories of causal judgments predict that people compare what actually happened with what would have happened if the candidate cause had been absent. Process theories predict that people focus only on what actually happened, to assess the mechanism linking candidate cause and outcome. We tracked participants' eye movements while they judged whether one billiard ball caused another one to go through a gate or prevented it from going through. Both participants' looking patterns and their judgments demonstrated that counterfactual simulation played a critical role. Participants simulated where the target ball would have gone if the candidate cause had been removed from the scene. The more certain participants were that the outcome would have been different, the stronger the causal judgments. These results provide the first direct evidence for spontaneous counterfactual simulation in an important domain of high-level cognition.

    View details for PubMedID 29039251

  • Plans, Habits, and Theory of Mind. PloS one Gershman, S. J., Gerstenberg, T., Baker, C. L., Cushman, F. A. 2016; 11 (9): e0162246

    Abstract

    Human success and even survival depends on our ability to predict what others will do by guessing what they are thinking. If I accelerate, will he yield? If I propose, will she accept? If I confess, will they forgive? Psychologists call this capacity "theory of mind." According to current theories, we solve this problem by assuming that others are rational actors. That is, we assume that others design and execute efficient plans to achieve their goals, given their knowledge. But if this view is correct, then our theory of mind is startlingly incomplete. Human action is not always a product of rational planning, and we would be mistaken to always interpret others' behaviors as such. A wealth of evidence indicates that we often act habitually-a form of behavioral control that depends not on rational planning, but rather on a history of reinforcement. We aim to test whether the human theory of mind includes a theory of habitual action and to assess when and how it is deployed. In a series of studies, we show that human theory of mind is sensitive to factors influencing the balance between habitual and planned behavior.

    View details for PubMedID 27584041

    View details for PubMedCentralID PMC5008760

  • Causal Conceptions in Social Explanation and Moral Evaluation: A Historical Tour PERSPECTIVES ON PSYCHOLOGICAL SCIENCE Alicke, M. D., Mandel, D. R., Hilton, D. J., Gerstenberg, T., Lagnado, D. A. 2015; 10 (6): 790–812

    Abstract

    Understanding the causes of human behavior is essential for advancing one's interests and for coordinating social relations. The scientific study of how people arrive at such understandings or explanations has unfolded in four distinguishable epochs in psychology, each characterized by a different metaphor that researchers have used to represent how people think as they attribute causality and blame to other individuals. The first epoch was guided by an "intuitive scientist" metaphor, which emphasized whether observers perceived behavior to be caused by the unique tendencies of the actor or by common reactions to the requirements of the situation. This metaphor was displaced in the second epoch by an "intuitive lawyer" depiction that focused on the need to hold people responsible for their misdeeds. The third epoch was dominated by theories of counterfactual thinking, which conveyed a "person as reconstructor" approach that emphasized the antecedents and consequences of imagining alternatives to events, especially harmful ones. With the current upsurge in moral psychology, the fourth epoch emphasizes the moral-evaluative aspect of causal judgment, reflected in a "person as moralist" metaphor. By tracing the progression from the person-environment distinction in early attribution theories to present concerns with moral judgment, our goal is to clarify how causal constructs have been used, how they relate to one another, and what unique attributional problems each addresses.

    View details for PubMedID 26581736

  • Causal superseding COGNITION Kominsky, J. F., Phillips, J., Gerstenberg, T., Lagnado, D., Knobe, J. 2015; 137: 196–209

    Abstract

    When agents violate norms, they are typically judged to be more of a cause of resulting outcomes. In this paper, we suggest that norm violations also affect the causality attributed to other agents, a phenomenon we refer to as "causal superseding." We propose and test a counterfactual reasoning model of this phenomenon in four experiments. Experiments 1 and 2 provide an initial demonstration of the causal superseding effect and distinguish it from previously studied effects. Experiment 3 shows that this causal superseding effect is dependent on a particular event structure, following a prediction of our counterfactual model. Experiment 4 demonstrates that causal superseding can occur with violations of non-moral norms. We propose a model of the superseding effect based on the idea of counterfactual sufficiency.

    View details for PubMedID 25698516

  • Concepts in a Probabilistic Language of Thought CONCEPTUAL MIND: NEW DIRECTIONS IN THE STUDY OF CONCEPTS Goodman, N. D., Tenenbaum, J. B., Gerstenberg, T., Margolis, E., Laurence, S. 2015: 623–53
  • Causal Responsibility and Counterfactuals COGNITIVE SCIENCE Lagnado, D. A., Gerstenberg, T., Zultan, R. 2013; 37 (6): 1036–73

    Abstract

    How do people attribute responsibility in situations where the contributions of multiple agents combine to produce a joint outcome? The prevalence of over-determination in such cases makes this a difficult problem for counterfactual theories of causal responsibility. In this article, we explore a general framework for assigning responsibility in multiple agent contexts. We draw on the structural model account of actual causation (e.g., Halpern & Pearl, 2005) and its extension to responsibility judgments (Chockler & Halpern, 2004). We review the main theoretical and empirical issues that arise from this literature and propose a novel model of intuitive judgments of responsibility. This model is a function of both pivotality (whether an agent made a difference to the outcome) and criticality (how important the agent is perceived to be for the outcome, before any actions are taken). The model explains empirical results from previous studies and is supported by a new experiment that manipulates both pivotality and criticality. We also discuss possible extensions of this model to deal with a broader range of causal situations. Overall, our approach emphasizes the close interrelations between causality, counterfactuals, and responsibility attributions.

    View details for PubMedID 23855451

  • When contributions make a difference: Explaining order effects in responsibility attribution PSYCHONOMIC BULLETIN & REVIEW Gerstenberg, T., Lagnado, D. A. 2012; 19 (4): 729–36

    Abstract

    In two experiments, we established an order effect in responsibility attributions. In line with Spellman (Journal of Experimental Psychology: General 126: 323-348, 1997), who proposed that a person's perceived causal contribution varies with the degree to which it changes the probability of the eventual outcome, Experiment 1 showed that in a team challenge in which the players contribute sequentially, the last player's blame or credit is attenuated if the team's result has already been determined prior to her acting. Experiment 2 illustrated that this attenuation effect does not overgeneralize to situations in which the experienced order of events does not map onto the objective order of events; the level of the last person's performance is only discounted if that person knew that the result was already determined. Furthermore, Experiment 1 demonstrated that responsibility attributions remain sensitive to differences in performance, even if the outcome is already determined. We suggest a theoretical extension of Spellman's model, according to which participants' responsibility attributions are determined not only by whether a contribution made a difference in the actual situation, but also by whether it would have made a difference had things turned out somewhat differently.

    View details for PubMedID 22585361

  • Spreading the blame: The allocation of responsibility amongst multiple agents COGNITION Gerstenberg, T., Lagnado, D. A. 2010; 115 (1): 166–71

    Abstract

    How do people assign responsibility to individuals in a group context? Participants played a repeated trial experimental game with three computer players, in which they counted triangles presented in complex diagrams. Three between-subject conditions differed in how the group outcome was computed from the individual players' answers. After each round, participants assigned responsibility for the outcome to each player. The results showed that participants' assignments varied between conditions, and were sensitive to the function that translated individual contributions into the group outcome. The predictions of different cognitive models of attribution were tested, and the Structural Model (Chockler & Halpern, 2004) predicted the data best.

    View details for PubMedID 20070958