Clinical Focus


  • Ophthalmology

Academic Appointments


Professional Education


  • Board Certification: Ophthalmology, American Board of Ophthalmology (2018)
  • Fellowship: UCLA Ophthalmology Fellowships (2018) CA
  • Residency: Stanford University Ophthalmology Residency (2017) CA
  • Internship: Stanford University Pediatric Residency (2014) CA
  • Medical Education: Harvard Medical School (2013) MA

All Publications


  • Comparison of simulated keratometric changes following wavefront-guided and wavefront-optimized myopic laser-assisted in situ keratomileusis CLINICAL OPHTHALMOLOGY Lee, W., Manche, E. E. 2018; 12: 613–19

    Abstract

    The aim of the study was to determine and compare the relationship between change in simulated keratometry (K) and degree of refractive correction in wavefront-guided (WFG) and wavefront-optimized (WFO) myopic laser-assisted in situ keratomileusis (LASIK).A total of 51 patients were prospectively randomized to WFG LASIK in one eye and WFO LASIK in the contralateral eye at the Byers Eye Institute, Stanford University. Changes in simulated K and refractive error were determined at 1 year post-operatively. Linear regression was employed to calculate the slope of change in simulated K (ΔK) for change in refractive error (ΔSE). The mean ratio (ΔK/ΔSE) was also calculated.The ratio of ΔK to ΔSE was larger for WFG LASIK compared to WFO LASIK when comparing the slope (ΔK/ΔSE) as determined by linear regression (0.85 vs 0.83, p = 0.04). Upon comparing the mean ratio (ΔK/ΔSE), subgroup analysis revealed that ΔK/ΔSE was larger for WFG LASIK for refractive corrections of >3.00 D and >4.00 D (0.89 vs 0.83; p = 0.0323 and 0.88 vs 0.83; p = 0.0466, respectively). Both linear regression and direct comparison of the mean ratio (ΔK/ΔSE) for refractive corrections <4.00 D and >4.00 D revealed no difference in ΔK/ΔSE between smaller and larger refractive corrections.WFO LASIK requires a smaller amount of corneal flattening compared to WFG LASIK for a given degree of refractive correction. For both, there was no significant difference in change in corneal curvature for a given degree of refractive error between smaller and larger corrections.

    View details for PubMedID 29636597

  • Phototherapeutic keratectomy for epithelial basement membrane dystrophy. Clinical ophthalmology (Auckland, N.Z.) Lee, W., Lam, C. K., Manche, E. E. 2017; 11: 15-22

    Abstract

    The purpose of this study was to evaluate the long-term efficacy of phototherapeutic keratectomy (PTK) in treating epithelial basement membrane dystrophy (EBMD).Preoperative and postoperative records were reviewed for 58 eyes of 51 patients with >3 months follow-up (range 3-170 months) treated for EBMD with PTK after failure of conservative medical treatment at Byers Eye Institute of Stanford University. Symptoms, clinical findings, and corrected distance visual acuity (CDVA) were assessed. The primary outcome measure was symptomatic recurrence as measured by erosions or visual complaints >3 months after successful PTK.For eyes with visual disturbances (n=30), preoperative CDVA waŝ20/32 (0.24 Log-MAR, SD 0.21) and postoperative CDVA was ~20/25 (0.07 LogMAR, SD 0.12; P<0.0001). Twenty-six eyes (86.7%) responded to treatment, with symptomatic recurrence in 6 eyes (23.1%) at an average of 37.7 months (SD 42.8). For eyes with painful erosions (n=29), preoperative CDVA was ~20/25 (0.12, SD 0.19) and postoperative CDVA was ~20/20 (0.05. SD 0.16; P=0.0785). Twenty-three eyes (79.3%) responded to treatment, with symptomatic recurrence in 3 eyes (13.0%) at an average of 9.7 months (SD 1.5). The probability of being recurrence free after a successful treatment for visual disturbances and erosions at 5 years postoperatively was estimated at 83.0% (95% confidence interval 68.7%-97.0%) and 88.0% (95% confidence interval 65.3%-96.6%), respectively.The majority of visual disturbances and painful erosions associated with EBMD respond to PTK. For those with a treatment response, symptomatic relief is maintained over long-term follow-up.

    View details for DOI 10.2147/OPTH.S122870

    View details for PubMedID 28031698

  • Comparison of Simulated Keratometric Changes Following Wavefront-Guided and Wavefront-Optimized Myopic Photorefractive Keratectomy JOURNAL OF REFRACTIVE SURGERY Lee, W., Manche, E. E. 2016; 32 (8): 542-548

    Abstract

    To determine the relationship between change in simulated keratometry and corrected refractive error in both wavefront-guided and wavefront-optimized myopic photorefractive keratectomy (PRK), and to determine whether there is a difference in this relationship between these two ablation profiles.Sixty-eight patients received wavefront-guided PRK in one eye and wavefront-optimized PRK in the contralateral eye. The changes in simulated keratometry and corresponding refractive changes for both were determined at 1 year postoperatively. Linear regression was employed to calculate the slope of change in simulated keratometry (ΔK) for change in refractive error (ΔSE) for both wavefront-guided and wavefront-optimized PRK and compared. The mean ratio ΔK/ΔSE was also calculated for both wavefront-guided and wavefront-optimized PRK and compared.There was no significant difference in the ratio of ΔK to ΔSE between wavefront-optimized and wavefront-guided PRK by both linear regression modeling and comparison of the mean ratio ΔK/ΔSE. Linear regression modeling revealed that the ratio of ΔK/ΔSE was greater for small amounts of change in refractive error and smaller for large amounts of change in refractive error. This trend was only statistically significant for the wavefront-optimized group when comparing the means of the ratio ΔK/ΔSE (P = .0287).The change in corneal curvature induced for a given degree of refractive correction was similar for both wavefront-optimized and wavefront-guided PRK. For both, a proportionally smaller amount of corneal flattening was required for larger degrees of refractive correction compared to smaller degrees. [J Refract Surg. 2016;32(8):542-548.].

    View details for DOI 10.3928/1081597X-20160525-01

    View details for Web of Science ID 000384899900005

    View details for PubMedID 27505315