All Publications


  • High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate OPTICS EXPRESS Celik, O., Sarabalis, C. J., Mayor, F. M., Stokowski, H. S., Herrmann, J. F., McKenna, T. P., Lee, N. A., Jiang, W., Multani, K. S., Safavi-Naeini, A. H. 2022; 30 (13): 23177-23186

    View details for DOI 10.1364/OE.460119

    View details for Web of Science ID 000813479600073

  • 2022 Roadmap on integrated quantum photonics JOURNAL OF PHYSICS-PHOTONICS Moody, G., Sorger, V. J., Blumenthal, D. J., Juodawlkis, P. W., Loh, W., Sorace-Agaskar, C., Jones, A. E., Balram, K. C., Matthews, J. F., Laing, A., Davanco, M., Chang, L., Bowers, J. E., Quack, N., Galland, C., Aharonovich, I., Wolff, M. A., Schuck, C., Sinclair, N., Loncar, M., Komljenovic, T., Weld, D., Mookherjea, S., Buckley, S., Radulaski, M., Reitzenstein, S., Pingault, B., Machielse, B., Mukhopadhyay, D., Akimov, A., Zheltikov, A., Agarwal, G. S., Srinivasan, K., Lu, J., Tang, H. X., Jiang, W., McKenna, T. P., Safavi-Naeini, A. H., Steinhauer, S., Elshaari, A. W., Zwiller, V., Davids, P. S., Martinez, N., Gehl, M., Chiaverini, J., Mehta, K. K., Romero, J., Lingaraju, N. B., Weiner, A. M., Peace, D., Cernansky, R., Lobino, M., Diamanti, E., Vidarte, L., Camacho, R. M. 2022; 4 (1)
  • III/V-on-lithium niobate amplifiers and lasers OPTICA de Beeck, C., Mayor, F. M., Cuyvers, S., Poelman, S., Herrmann, J. F., Atalar, O., McKenna, T. P., Haq, B., Jiang, W., Witmer, J. D., Roelkens, G., Safavi-Naeini, A. H., Van Laer, R., Kuyken, B. 2021; 8 (10): 1288-1289
  • Acousto-optic modulation of a wavelength-scale waveguide OPTICA Sarabalis, C. J., Van Laer, R., Patel, R. N., Dahmani, Y. D., Jiang, W., Mayor, F. M., Safavi-Naeini, A. H. 2021; 8 (4): 477-483
  • Loss channels affecting lithium niobate phononic crystal resonators at cryogenic temperature APPLIED PHYSICS LETTERS Wollack, E., Cleland, A. Y., Arrangoiz-Arriola, P., McKenna, T. P., Gruenke, R. G., Patel, R. N., Jiang, W., Sarabalis, C. J., Safavi-Naeini, A. H. 2021; 118 (12)

    View details for DOI 10.1063/5.0034909

    View details for Web of Science ID 000632733300001

  • Gigahertz Phononic Integrated Circuits on Thin-Film Lithium Niobate on Sapphire PHYSICAL REVIEW APPLIED Mayor, F. M., Jiang, W., Sarabalis, C. J., McKenna, T. P., Witmer, J. D., Safavi-Naeini, A. H. 2021; 15 (1)
  • Room-Temperature Mechanical Resonator with a Single Added or Subtracted Phonon. Physical review letters Patel, R. N., McKenna, T. P., Wang, Z., Witmer, J. D., Jiang, W., Van Laer, R., Sarabalis, C. J., Safavi-Naeini, A. H. 2021; 127 (13): 133602

    Abstract

    A room-temperature mechanical oscillator undergoes thermal Brownian motion with an amplitude much larger than the amplitude associated with a single phonon of excitation. This motion can be read out and manipulated using laser light using a cavity-optomechanical approach. By performing a strong quantum measurement (i.e., counting single photons in the sidebands imparted on a laser), we herald the addition and subtraction of single phonons on the 300 K thermal motional state of a 4 GHz mechanical oscillator. To understand the resulting mechanical state, we implement a tomography scheme and observe highly non-Gaussian phase-space distributions. Using a maximum likelihood method, we infer the density matrix of the oscillator, and we confirm the counterintuitive doubling of the mean phonon number resulting from phonon addition and subtraction.

    View details for DOI 10.1103/PhysRevLett.127.133602

    View details for PubMedID 34623823

  • Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer OPTICA McKenna, T. P., Witmer, J. D., Patel, R. N., Jiang, W., Van Laer, R., Arrangoiz-Arriola, P., Wollack, E., Herrmann, J. F., Safavi-Naeini, A. H. 2020; 7 (12): 1737–45
  • Nanobenders as efficient piezoelectric actuators for widely tunable nanophotonics at CMOS-level voltages COMMUNICATIONS PHYSICS Jiang, W., Mayor, F. M., Patel, R. N., McKenna, T. P., Sarabalis, C. J., Safavi-Naeini, A. H. 2020; 3 (1)
  • Piezoelectric Transduction of a Wavelength-Scale Mechanical Waveguide PHYSICAL REVIEW APPLIED Dahmani, Y. D., Sarabalis, C. J., Jiang, W., Mayor, F. M., Safavi-Naeini, A. H. 2020; 13 (2)
  • Piezo-optomechanics in lithium niobate on silicon-on-insulator for microwave-to-optics transduction Van Laer, R., Jiang, W., Patel, R. N., Sarabalis, C. J., Cleland, A., McKenna, T. P., Wollack, E., Witmer, J. D., Safavi-Naeini, A. H., IEEE IEEE. 2020
  • Development of a Millimeter-Wave Transducer for Quantum Networks Multani, K. S., Stokowski, H., Snively, E., Patel, R., Jiang, W., Lee, N., Welander, P. B., Nanni, E. A., Safavi-Naeini, A. H., IEEE IEEE. 2020
  • Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nature communications Jiang, W. n., Sarabalis, C. J., Dahmani, Y. D., Patel, R. N., Mayor, F. M., McKenna, T. P., Van Laer, R. n., Safavi-Naeini, A. H. 2020; 11 (1): 1166

    Abstract

    Efficient interconversion of both classical and quantum information between microwave and optical frequency is an important engineering challenge. The optomechanical approach with gigahertz-frequency mechanical devices has the potential to be extremely efficient due to the large optomechanical response of common materials, and the ability to localize mechanical energy into a micron-scale volume. However, existing demonstrations suffer from some combination of low optical quality factor, low electrical-to-mechanical transduction efficiency, and low optomechanical interaction rate. Here we demonstrate an on-chip piezo-optomechanical transducer that systematically addresses all these challenges to achieve nearly three orders of magnitude improvement in conversion efficiency over previous work. Our modulator demonstrates acousto-optic modulation with [Formula: see text] = 0.02 V. We show bidirectional conversion efficiency of [Formula: see text] with 3.3 μW  red-detuned optical pump, and [Formula: see text] with 323 μW blue-detuned pump. Further study of quantum transduction at millikelvin temperatures is required to understand how the efficiency and added noise are affected by reduced mechanical dissipation, thermal conductivity, and thermal capacity.

    View details for DOI 10.1038/s41467-020-14863-3

    View details for PubMedID 32127538

  • Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency Jiang, W., Sarabalis, C. J., Dahmani, Y. D., Patel, R. N., Mayor, F. M., McKenna, T. P., Van Laer, R., Safavi-Naeini, A. H., IEEE IEEE. 2020
  • Nanobenders: efficient piezoelectric actuators for widely tunable nanophotonics at CMOS-level voltages Jiang, W., Mayor, F. M., Patel, R. N., McKenna, T. P., Sarabalis, C. J., Safavi-Naeini, A. H., IEEE IEEE. 2020
  • Lithium niobate piezo-optomechanical crystals OPTICA Jiang, W., Patel, R. N., Mayor, F. M., Mckenna, T. P., Arrangoiz-Arriola, P., Sarabalis, C. J., Witmer, J. D., Van Laer, R., Safavi-Naeini, A. H. 2019; 6 (7): 845–53
  • Resolving the energy levels of a nanomechanical oscillator. Nature Arrangoiz-Arriola, P., Wollack, E. A., Wang, Z., Pechal, M., Jiang, W., McKenna, T. P., Witmer, J. D., Van Laer, R., Safavi-Naeini, A. H. 2019; 571 (7766): 537–40

    Abstract

    The quantum nature of an oscillating mechanical object is anything but apparent. The coherent states that describe the classical motion of a mechanical oscillator do not have a well defined energy, but are quantum superpositions of equally spaced energy eigenstates. Revealing this quantized structure is only possible with an apparatus that measures energy with a precision greater than the energy of a single phonon. One way to achieve this sensitivity is by engineering a strong but nonresonant interaction between the oscillator and an atom. In a system with sufficient quantum coherence, this interaction allows one to distinguish different energy eigenstates using resolvable differences in the atom's transition frequency. For photons, such dispersive measurements have been performed in cavity1,2 and circuit quantum electrodynamics3. Here we report an experiment in which an artificial atom senses the motional energy of a driven nanomechanical oscillator with sufficient sensitivity to resolve the quantization of its energy. To realize this, we build a hybrid platform that integrates nanomechanical piezoelectric resonators with a microwave superconducting qubit on the same chip. We excite phonons with resonant pulses and probe the resulting excitation spectrum of the qubit to observe phonon-number-dependent frequency shifts that are about five times larger than the qubit linewidth. Our result demonstrates a fully integrated platform for quantum acoustics that combines large couplings, considerable coherence times and excellent control over the mechanical mode structure. With modest experimental improvements, we expect that our approach will enable quantum nondemolition measurements of phonons4 and will lead to quantum sensors and information-processing approaches5 that use chip-scale nanomechanical devices.

    View details for DOI 10.1038/s41586-019-1386-x

    View details for PubMedID 31341303

  • Microwave Quantum Acoustic Processor Arrangoiz-Arriola, P., Wollack, E., Pechal, M., Jiang, W., Wang, Z., McKenna, T. P., Witmer, J., Van Laer, R., Cleland, A., Lee, N., Sarabalis, C. J., Stas, P., Safavi-Naeini, A. H., IEEE IEEE. 2019: 255–58
  • High-quality Lithium Niobate Optomechanical Crystal Jiang, W., Patel, R. N., Mayor, F. M., McKenna, T. P., Arrangoiz-Arriola, P., Sarabalis, C. J., Van Laer, R., Safavi-Naeini, A. H., IEEE IEEE. 2019
  • Quantum Acoustics with Lithium Niobate Nanocavities Arrangoiz-Arriola, P., Wollack, E., Pechal, M., Jiang, W., Wang, Z., McKenna, T. P., Safavi-Naeini, A. H., IEEE IEEE. 2019
  • Single-Mode Phononic Wire. Physical review letters Patel, R. N., Wang, Z., Jiang, W., Sarabalis, C. J., Hill, J. T., Safavi-Naeini, A. H. 2018; 121 (4): 040501

    Abstract

    Photons and electrons transmit information to form complex systems and networks. Phonons on the other hand, the quanta of mechanical motion, are often considered only as carriers of thermal energy. Nonetheless, their flow can also be molded in fabricated nanoscale circuits. We design and experimentally demonstrate wires for phonons by patterning the surface of a silicon chip. Our device eliminates all but one channel of phonon conduction, allowing coherent phonon transport over millimeter length scales. We characterize the phononic wire optically, by coupling it strongly to an optomechanical transducer. The phononic wire enables new ways to manipulate information and energy on a chip. In particular, our result is an important step towards realizing on-chip phonon networks, in which quantum information is transmitted between nodes via phonons.

    View details for DOI 10.1103/PhysRevLett.121.040501

    View details for PubMedID 30095955

  • Single-Mode Phononic Wire PHYSICAL REVIEW LETTERS Patel, R. N., Wang, Z., Jiang, W., Sarabalis, C. J., Hill, J. T., Safavi-Naeini, A. H. 2018; 121 (4)