Bio


I am a scientist in the LCLS Atomic, Molecular and Optical (AMO) Sciences Department and Data Systems Division. Investigating the ultrafast processes in atoms and molecules with charged-particle spectroscopy at x-ray free-electron lasers is the major theme of my research. It consists of three interconnected endeavors. One is to understand the material response to ultra-intense x-rays at the atomic level, and another is to exploit such x-rays as the probe for unraveling photo-induced molecular dynamics. And the third is to develop machine learning algorithms for solving some of the bottleneck problems in our field. I am involved in the design, assembly, and operation of experimental endstations at the AMO beamline of the LCLS, as well as the software development for AMO experiments performed at free-electron laser facilities.

All Publications


  • Terawatt-scale attosecond X-ray pulses from a cascaded superradiant free-electron laser NATURE PHOTONICS Franz, P., Li, S., Driver, T., Robles, R. R., Cesar, D., Isele, E., Guo, Z., Wang, J., Duris, J. P., Larsen, K., Glownia, J. M., Cheng, X., Hoffmann, M. C., Li, X., Lin, M., Kamalov, A., Obaid, R., Summers, A., Sudar, N., Thierstein, E., Zhang, Z., Kling, M. F., Huang, Z., Cryan, J. P., Marinelli, A. 2024
  • Experimental demonstration of attosecond pump-probe spectroscopy with an X-ray free-electron laser NATURE PHOTONICS Guo, Z., Driver, T., Beauvarlet, S., Cesar, D., Duris, J., Franz, P. L., Alexander, O., Bohler, D., Bostedt, C., Averbukh, V., Cheng, X., Dimauro, L. F., Doumy, G., Forbes, R., Gessner, O., Glownia, J. M., Isele, E., Kamalov, A., Larsen, K. A., Li, S., Li, X., Lin, M., Mccracken, G. A., Obaid, R., O'Neal, J. T., Robles, R. R., Rolles, D., Ruberti, M., Rudenko, A., Slaughter, D. S., Sudar, N. S., Thierstein, E., Tuthill, D., Ueda, K., Wang, E., Wang, A. L., Wang, J., Weber, T., Wolf, T. A., Young, L., Zhang, Z., Bucksbaum, P. H., Marangos, J. P., Kling, M. F., Huang, Z., Walter, P., Inhester, L., Berrah, N., Cryan, J. P., Marinelli, A. 2024
  • Investigating charge-up and fragmentation dynamics of oxygen molecules after interaction with strong X-ray free-electron laser pulses. Physical chemistry chemical physics : PCCP Kastirke, G., Ota, F., Rezvan, D. V., Schöffler, M. S., Weller, M., Rist, J., Boll, R., Anders, N., Baumann, T. M., Eckart, S., Erk, B., De Fanis, A., Fehre, K., Gatton, A., Grundmann, S., Grychtol, P., Hartung, A., Hofmann, M., Ilchen, M., Janke, C., Kircher, M., Kunitski, M., Li, X., Mazza, T., Melzer, N., Montano, J., Music, V., Nalin, G., Ovcharenko, Y., Pier, A., Rennhack, N., Rivas, D. E., Dörner, R., Rolles, D., Rudenko, A., Schmidt, P., Siebert, J., Strenger, N., Trabert, D., Vela-Perez, I., Wagner, R., Weber, T., Williams, J. B., Ziolkowski, P., Schmidt, L. P., Czasch, A., Tamura, Y., Hara, N., Yamazaki, K., Hatada, K., Trinter, F., Meyer, M., Ueda, K., Demekhin, P. V., Jahnke, T. 2022; 24 (44): 27121-27127

    Abstract

    During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light-matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses.

    View details for DOI 10.1039/d2cp02408j

    View details for PubMedID 36342321

  • The time-resolved atomic, molecular and optical science instrument at the Linac Coherent Light Source. Journal of synchrotron radiation Walter, P., Osipov, T., Lin, M. F., Cryan, J., Driver, T., Kamalov, A., Marinelli, A., Robinson, J., Seaberg, M. H., Wolf, T. J., Aldrich, J., Brown, N., Champenois, E. G., Cheng, X., Cocco, D., Conder, A., Curiel, I., Egger, A., Glownia, J. M., Heimann, P., Holmes, M., Johnson, T., Lee, L., Li, X., Moeller, S., Morton, D. S., Ng, M. L., Ninh, K., O'Neal, J. T., Obaid, R., Pai, A., Schlotter, W., Shepard, J., Shivaram, N., Stefan, P., Van, X., Wang, A. L., Wang, H., Yin, J., Yunus, S., Fritz, D., James, J., Castagna, J. C. 2022; 29 (Pt 4): 957-968

    Abstract

    The newly constructed time-resolved atomic, molecular and optical science instrument (TMO) is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per-pulse energy as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators power a soft X-ray free-electron laser with the new variable-gap undulator section. With this flexible light source, TMO supports many experimental techniques not previously available at LCLS and will have two X-ray beam focus spots in line. Thereby, TMO supports atomic, molecular and optical, strong-field and nonlinear science and will also host a designated new dynamic reaction microscope with a sub-micrometer X-ray focus spot. The flexible instrument design is optimized for studying ultrafast electronic and molecular phenomena and can take full advantage of the sub-femtosecond soft X-ray pulse generation program.

    View details for DOI 10.1107/S1600577522004283

    View details for PubMedID 35787561

  • Strong-Field-Induced Coulomb Explosion Imaging of Tribromomethane. The journal of physical chemistry letters Bhattacharyya, S., Borne, K., Ziaee, F., Pathak, S., Wang, E., Venkatachalam, A. S., Li, X., Marshall, N., Carnes, K. D., Fehrenbach, C. W., Severt, T., Ben-Itzhak, I., Rudenko, A., Rolles, D. 2022; 13 (25): 5845-5853

    Abstract

    The Coulomb explosion of tribromomethane (bromoform, CHBr3) induced by 28 fs near-infrared laser pulses is investigated by three-dimensional coincidence ion momentum imaging. We focus on the fragmentation into three, four, and five ionic fragments measured in coincidence and present different ways of visualizing the three-dimensional momentum correlations. We show that the experimentally observed momentum correlations for 4- and 5-fold coincidences are well reproduced by classical Coulomb explosion simulations and contain information about the structure of the parent molecule that could be used to differentiate structural isomers formed, for example, in a pump-probe experiment. Our results thus provide a clear path toward visualizing structural dynamics in polyatomic molecules by strong-field-induced Coulomb explosion imaging.

    View details for DOI 10.1021/acs.jpclett.2c01007

    View details for PubMedID 35727076

    View details for PubMedCentralID PMC9252187

  • Resonance-enhanced x-ray multiple ionization of a polyatomic molecule PHYSICAL REVIEW A Li, X., Rudenko, A., Mazza, T., Roerig, A., Anders, N., Baumann, T. M., Eckart, S., Erk, B., De Fanis, A., Fehre, K., Doerner, R., Foucar, L., Grundmann, S., Grychtol, P., Hartung, A., Hofmann, M., Ilchen, M., Janke, C., Kastirke, G., Kircher, M., Kubicek, K., Kunitski, M., Meister, S., Melzer, N., Montano, J., Music, V., Nalin, G., Ovcharenko, Y., Passow, C., Pier, A., Rennhack, N., Rist, J., Rivas, D. E., Schlichting, I., Schmidt, L. H., Schmidt, P., Schoeffler, M. S., Siebert, J., Strenger, N., Trabert, D., Trinter, F., Vela-Perez, Wagner, R., Walter, P., Weller, M., Ziolkowski, P., Czasch, A., Meyer, M., Jahnke, T., Rolles, D., Boll, R. 2022; 105 (5)
  • X-ray multiphoton-induced Coulomb explosion images complex single molecules NATURE PHYSICS Boll, R., Schaefer, J. M., Richard, B., Fehre, K., Kastirke, G., Jurek, Z., Schoeffler, M. S., Abdullah, M. M., Anders, N., Baumann, T. M., Eckart, S., Erk, B., De Fanis, A., Doerner, R., Grundmann, S., Grychtol, P., Hartung, A., Hofmann, M., Ilchen, M., Inhester, L., Janke, C., Jin, R., Kircher, M., Kubicek, K., Kunitski, M., Li, X., Mazza, T., Meister, S., Melzer, N., Montano, J., Music, V., Nalin, G., Ovcharenko, Y., Passow, C., Pier, A., Rennhack, N., Rist, J., Rivas, D. E., Rolles, D., Schlichting, I., Schmidt, L. H., Schmidt, P., Siebert, J., Strenger, N., Trabert, D., Trinter, F., Vela-Perez, I., Wagner, R., Walter, P., Weller, M., Ziolkowski, P., Son, S., Rudenko, A., Meyer, M., Santra, R., Jahnke, T. 2022; 18 (4): 423-+
  • Coulomb explosion imaging of small polyatomic molecules with ultrashort x-ray pulses PHYSICAL REVIEW RESEARCH Li, X., Rudenko, A., Schoeffler, M. S., Anders, N., Baumann, T. M., Eckart, S., Erk, B., De Fanis, A., Fehre, K., Doerner, R., Foucar, L., Grundmann, S., Grychtol, P., Hartung, A., Hofmann, M., Ilchen, M., Janke, C., Kastirke, G., Kircher, M., Kubicek, K., Kunitski, M., Mazza, T., Meister, S., Melzer, N., Montano, J., Music, Nalin, G., Ovcharenko, Y., Passow, C., Pier, A., Rennhack, N., Rist, J., Rivas, D. E., Schlichting, Schmidt, L. H., Schmidt, P., Siebert, J., Strenger, N., Trabert, D., Trinter, F., Vela-Perez, Wagner, R., Walter, P., Weller, M., Ziolkowski, P., Czasch, A., Rolles, D., Meyer, M., Jahnke, T., Boll, R. 2022; 4 (1)
  • The X-ray Focusing System at the Time-Resolved AMO Instrument Synchrotron Radiation News Seaberg, M., et al 2022; 35 (2): 20-28
  • Inner-Shell-Ionization-Induced Femtosecond Structural Dynamics of Water Molecules Imaged at an X-Ray Free-Electron Laser PHYSICAL REVIEW X Jahnke, T., Guillemin, R., Inhester, L., Son, S., Kastirke, G., Ilchen, M., Rist, J., Trabert, D., Melzer, N., Anders, N., Mazza, T., Boll, R., De Fanis, A., Music, Weber, T., Weller, M., Eckart, S., Fehre, K., Grundmann, S., Hartung, A., Hofmann, M., Janke, C., Kircher, M., Nalin, G., Pier, A., Siebert, J., Strenger, N., Vela-Perez, Baumann, T. M., Grychtol, P., Montano, J., Ovcharenko, Y., Rennhack, N., Rivas, D. E., Wagner, R., Ziolkowski, P., Schmidt, P., Marchenko, T., Travnikova, O., Journel, L., Ismail, I., Kukk, E., Niskanen, J., Trinter, F., Vozzi, C., Devetta, M., Stagira, S., Gisselbrecht, M., Jaeger, A. L., Li, X., Malakar, Y., Martins, M., Feifel, R., Schmidt, L. H., Czasch, A., Sansone, G., Rolles, D., Rudenko, A., Moshammer, R., Doerner, R., Meyer, M., Pfeifer, T., Schoeffler, M. S., Santra, R., Simon, M., Piancastelli, M. N. 2021; 11 (4)
  • Simple model for sequential multiphoton ionization by ultraintense x rays PHYSICAL REVIEW A Li, X., Boll, R., Rolles, D., Rudenko, A. 2021; 104 (3)
  • Pulse Energy and Pulse Duration Effects in the Ionization and Fragmentation of Iodomethane by Ultraintense Hard X Rays. Physical review letters Li, X., Inhester, L., Robatjazi, S. J., Erk, B., Boll, R., Hanasaki, K., Toyota, K., Hao, Y., Bomme, C., Rudek, B., Foucar, L., Southworth, S. H., Lehmann, C. S., Kraessig, B., Marchenko, T., Simon, M., Ueda, K., Ferguson, K. R., Bucher, M., Gorkhover, T., Carron, S., Alonso-Mori, R., Koglin, J. E., Correa, J., Williams, G. J., Boutet, S., Young, L., Bostedt, C., Son, S. K., Santra, R., Rolles, D., Rudenko, A. 2021; 127 (9): 093202

    Abstract

    The interaction of intense femtosecond x-ray pulses with molecules sensitively depends on the interplay between multiple photoabsorptions, Auger decay, charge rearrangement, and nuclear motion. Here, we report on a combined experimental and theoretical study of the ionization and fragmentation of iodomethane (CH_{3}I) by ultraintense (∼10^{19}  W/cm^{2}) x-ray pulses at 8.3 keV, demonstrating how these dynamics depend on the x-ray pulse energy and duration. We show that the timing of multiple ionization steps leading to a particular reaction product and, thus, the product's final kinetic energy, is determined by the pulse duration rather than the pulse energy or intensity. While the overall degree of ionization is mainly defined by the pulse energy, our measurement reveals that the yield of the fragments with the highest charge states is enhanced for short pulse durations, in contrast to earlier observations for atoms and small molecules in the soft x-ray domain. We attribute this effect to a decreased charge transfer efficiency at larger internuclear separations, which are reached during longer pulses.

    View details for DOI 10.1103/PhysRevLett.127.093202

    View details for PubMedID 34506178

  • Electron-ion coincidence measurements of molecular dynamics with intense X-ray pulses. Scientific reports Li, X., Inhester, L., Osipov, T., Boll, R., Coffee, R., Cryan, J., Gatton, A., Gorkhover, T., Hartman, G., Ilchen, M., Knie, A., Lin, M., Minitti, M. P., Weninger, C., Wolf, T. J., Son, S., Santra, R., Rolles, D., Rudenko, A., Walter, P. 2021; 11 (1): 505

    Abstract

    Molecules can sequentially absorb multiple photons when irradiated by an intense X-ray pulse from a free-electron laser. If the time delay between two photoabsorption events can be determined, this enables pump-probe experiments with a single X-ray pulse, where the absorption of the first photon induces electronic and nuclear dynamics that are probed by the absorption of the second photon. Here we show a realization of such a single-pulse X-ray pump-probe scheme on N[Formula: see text] molecules, using the X-ray induced dissociation process as an internal clock that is read out via coincident detection of photoelectrons and fragment ions. By coincidence analysis of the kinetic energies of the ionic fragments and photoelectrons, the transition from a bound molecular dication to two isolated atomic ions is observed through the energy shift of the inner-shell electrons. Via ab-initio simulations, we are able to map characteristic features in the kinetic energy release and photoelectron spectrum to specific delay times between photoabsorptions. In contrast to previous studies where nuclear motions were typically revealed by measuring ion kinetics, our work shows that inner-shell photoelectron energies can also be sensitive probes of nuclear dynamics, which adds one more dimension to the study of light-matter interactions with X-ray pulses.

    View details for DOI 10.1038/s41598-020-79818-6

    View details for PubMedID 33436816

  • Differentiating and Quantifying Gas-Phase Conformational Isomers Using Coulomb Explosion Imaging. The journal of physical chemistry letters Pathak, S., Obaid, R., Bhattacharyya, S., Bürger, J., Li, X., Tross, J., Severt, T., Davis, B., Bilodeau, R. C., Trallero-Herrero, C. A., Rudenko, A., Berrah, N., Rolles, D. 2020; 11 (23): 10205-10211

    Abstract

    Conformational isomerism plays a crucial role in defining the physical and chemical properties and biological activity of molecules ranging from simple organic compounds to complex biopolymers. However, it is often a significant challenge to differentiate and separate these isomers experimentally as they can easily interconvert due to their low rotational energy barrier. Here, we use the momentum correlation of fragment ions produced after inner-shell photoionization to distinguish conformational isomers of 1,2-dibromoethane (C2H4Br2). We demonstrate that the three-body breakup channel, C2H4+ + Br+ + Br+, contains signatures of both sequential and concerted breakup, which are decoupled to distinguish the geometries of two conformational isomers and to quantify their relative abundance. The sensitivity of our method to quantify these yields is established by measuring the relative abundance change with sample temperature, which agrees well with calculations. Our study paves the way for using Coulomb explosion imaging to track subtle molecular structural changes.

    View details for DOI 10.1021/acs.jpclett.0c02959

    View details for PubMedID 33206545

  • Double Core-Hole Generation in O_{2} Molecules Using an X-Ray Free-Electron Laser: Molecular-Frame Photoelectron Angular Distributions. Physical review letters Kastirke, G., Schöffler, M. S., Weller, M., Rist, J., Boll, R., Anders, N., Baumann, T. M., Eckart, S., Erk, B., De Fanis, A., Fehre, K., Gatton, A., Grundmann, S., Grychtol, P., Hartung, A., Hofmann, M., Ilchen, M., Janke, C., Kircher, M., Kunitski, M., Li, X., Mazza, T., Melzer, N., Montano, J., Music, V., Nalin, G., Ovcharenko, Y., Pier, A., Rennhack, N., Rivas, D. E., Dörner, R., Rolles, D., Rudenko, A., Schmidt, P., Siebert, J., Strenger, N., Trabert, D., Vela-Perez, I., Wagner, R., Weber, T., Williams, J. B., Ziolkowski, P., Schmidt, L. P., Czasch, A., Ueda, K., Trinter, F., Meyer, M., Demekhin, P. V., Jahnke, T. 2020; 125 (16): 163201

    Abstract

    We report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions. The measured distributions are compared to results of calculations performed within the frozen- and relaxed-core Hartree-Fock approximations.

    View details for DOI 10.1103/PhysRevLett.125.163201

    View details for PubMedID 33124863

  • Electronic Population Transfer via Impulsive Stimulated X-Ray Raman Scattering with Attosecond Soft-X-Ray Pulses. Physical review letters O'Neal, J. T., Champenois, E. G., Oberli, S., Obaid, R., Al-Haddad, A., Barnard, J., Berrah, N., Coffee, R., Duris, J., Galinis, G., Garratt, D., Glownia, J. M., Haxton, D., Ho, P., Li, S., Li, X., MacArthur, J., Marangos, J. P., Natan, A., Shivaram, N., Slaughter, D. S., Walter, P., Wandel, S., Young, L., Bostedt, C., Bucksbaum, P. H., Picón, A., Marinelli, A., Cryan, J. P. 2020; 125 (7): 073203

    Abstract

    Free-electron lasers provide a source of x-ray pulses short enough and intense enough to drive nonlinearities in molecular systems. Impulsive interactions driven by these x-ray pulses provide a way to create and probe valence electron motions with high temporal and spatial resolution. Observing these electronic motions is crucial to understand the role of electronic coherence in chemical processes. A simple nonlinear technique for probing electronic motion, impulsive stimulated x-ray Raman scattering (ISXRS), involves a single impulsive interaction to produce a coherent superposition of electronic states. We demonstrate electronic population transfer via ISXRS using broad bandwidth (5.5 eV full width at half maximum) attosecond x-ray pulses produced by the Linac Coherent Light Source. The impulsive excitation is resonantly enhanced by the oxygen 1s→2π^{*} resonance of nitric oxide (NO), and excited state neutral molecules are probed with a time-delayed UV laser pulse.

    View details for DOI 10.1103/PhysRevLett.125.073203

    View details for PubMedID 32857563

  • Photoelectron Diffraction Imaging of a Molecular Breakup Using an X-Ray Free-Electron Laser PHYSICAL REVIEW X Kastirke, G., Schoeffler, M. S., Weller, M., Rist, J., Boll, R., Anders, N., Baumann, T. M., Eckart, S., Erk, B., De Fanis, A., Fehre, K., Gatton, A., Grundmann, S., Grychtol, P., Hartung, A., Hofmann, M., Ilchen, M., Janke, C., Kircher, M., Kunitski, M., Li, X., Mazza, T., Melzer, N., Montano, J., Music, V., Nalin, G., Ovcharenko, Y., Pier, A., Rennhack, N., Rivas, D. E., Doerner, R., Rolles, D., Rudenko, A., Schmidt, P., Siebert, J., Stenger, N., Trabert, D., Vela-Perez, I., Wagner, R., Weber, T., Williams, J. B., Ziolkowski, P., Schmidt, L. H., Czasch, A., Trinter, F., Meyer, M., Ueda, K., Demekhin, P., Jahnke, T. 2020; 10 (2)
  • State-selective dissociation dynamics of an oxygen molecular ion studied with single-harmonic pump and infrared-probe pulses PHYSICAL REVIEW A Malakar, Y., Wilhelm, F., Trabert, D., Raju, K. P., Li, X., Pearson, W. L., Cao, W., Kaderiya, B., Ben-Itzhak, I., Rudenko, A. 2018; 98 (1)
  • Femtosecond response of polyatomic molecules to ultra-intense hard X-rays. Nature Rudenko, A., Inhester, L., Hanasaki, K., Li, X., Robatjazi, S. J., Erk, B., Boll, R., Toyota, K., Hao, Y., Vendrell, O., Bomme, C., Savelyev, E., Rudek, B., Foucar, L., Southworth, S. H., Lehmann, C. S., Kraessig, B., Marchenko, T., Simon, M., Ueda, K., Ferguson, K. R., Bucher, M., Gorkhover, T., Carron, S., Alonso-Mori, R., Koglin, J. E., Correa, J., Williams, G. J., Boutet, S., Young, L., Bostedt, C., Son, S. K., Santra, R., Rolles, D. 2017; 546 (7656): 129-132

    Abstract

    X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 1020 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects-an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure-the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 1020 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.

    View details for DOI 10.1038/nature22373

    View details for PubMedID 28569799