Stanford Advisors


All Publications


  • Generation of two induced pluripotent stem cell lines from Duchenne muscular dystrophy patients. Stem cell research Liu, W., Zeng, W., Kong, X., Htet, M., Yu, R., Wheeler, M., Day, J. W., Wu, J. C. 2023; 72: 103207

    Abstract

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder that leads to death in early adulthood. Patients with DMD have null mutations leading to loss of functional dystrophin protein. Here we generated two DMD induced pluripotent stem cell (iPSC) lines, one with deletion of exon 51 and the other with a single nucleotide nonsense mutation (c.10171C > T). Both lines expressed high levels of pluripotency markers, had the capability of differentiating into derivatives of the three germ layers, and possessed normal karyotypes. These iPSC lines can serve as powerful tools to model DMD in vitro and as a platform for therapeutic development.

    View details for DOI 10.1016/j.scr.2023.103207

    View details for PubMedID 37740996

  • Generation of two induced pluripotent stem cell lines from catecholaminergic polymorphic ventricular tachycardia patients carrying RYR2 mutations. Stem cell research Kong, X., Belbachir, N., Zeng, W., Yan, C. D., Navada, S., Perez, M. V., Wu, J. C. 2023; 69: 103111

    Abstract

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a congenital arrhythmic syndrome caused by the RYR2 gene encoded ryanodine receptor. Mutations on RYR2 are commonly associated with ventricular tachycardia after adrenergic stimulation, leading to lethal arrhythmias and sudden cardiac death. We generated two human induced pluripotent stem cell (iPSC) lines from CPVT affected patients carrying single missense heterozygote RYR2 mutations, c.1082 G > A and c.100 A > C. Pluripotency and differentiation capability into derivatives of three germ layers were evaluated along with karyotype stability in the report. The generated patient-specific iPSC lines provide a reliable tool to investigate the CPVT phenotype and understand underlaying mechanisms.

    View details for DOI 10.1016/j.scr.2023.103111

    View details for PubMedID 37210947

  • Generation of two induced pluripotent stem cell lines from spinal muscular atrophy type 1 patients carrying no functional copies of SMN1 gene. Stem cell research Zeng, W., Kong, X., Alamana, C., Liu, Y., Guzman, J., Pang, P. D., Day, J. W., Wu, J. C. 2023; 69: 103095

    Abstract

    Spinal muscular atrophy (SMA) is a severe neurodegenerative muscular disease caused by the homozygous loss of survival of motor neuron 1 (SMN1) genes. SMA patients exhibit marked skeletal muscle (SKM) loss, eventually leading to death. Here we generated two iPSC lines from two SMA type I patients with homozygous SMN1 mutations and validated the pluripotency and the ability to differentiate into three germ layers. The iPSC lines can be applied to generate skeletal muscles to model muscle atrophy of SMA that persists after treatment of motor neurons and will serve as a complementary platform for drug screening in vitro.

    View details for DOI 10.1016/j.scr.2023.103095

    View details for PubMedID 37087898

  • LncRNA-Smad7 mediates cross-talk between Nodal/TGF-β and BMP signaling to regulate cell fate determination of pluripotent and multipotent cells. Nucleic acids research Kong, X., Yan, K., Deng, P., Fu, H., Sun, H., Huang, W., Jiang, S., Dai, J., Zhang, Q. C., Liu, J. G., Xi, Q. 2022; 50 (18): 10526-10543

    Abstract

    Transforming growth factor β (TGF-β) superfamily proteins are potent regulators of cellular development and differentiation. Nodal/Activin/TGF-β and BMP ligands are both present in the intra- and extracellular milieu during early development, and cross-talk between these two branches of developmental signaling is currently the subject of intense research focus. Here, we show that the Nodal induced lncRNA-Smad7 regulates cell fate determination via repression of BMP signaling in mouse embryonic stem cells (mESCs). Depletion of lncRNA-Smad7 dramatically impairs cardiomyocyte differentiation in mESCs. Moreover, lncRNA-Smad7 represses Bmp2 expression through binding with the Bmp2 promoter region via (CA)12-repeats that forms an R-loop. Importantly, Bmp2 knockdown rescues defects in cardiomyocyte differentiation induced by lncRNA-Smad7 knockdown. Hence, lncRNA-Smad7 antagonizes BMP signaling in mESCs, and similarly regulates cell fate determination between osteocyte and myocyte formation in C2C12 mouse myoblasts. Moreover, lncRNA-Smad7 associates with hnRNPK in mESCs and hnRNPK binds at the Bmp2 promoter, potentially contributing to Bmp2 expression repression. The antagonistic effects between Nodal/TGF-β and BMP signaling via lncRNA-Smad7 described in this work provides a framework for understanding cell fate determination in early development.

    View details for DOI 10.1093/nar/gkac780

    View details for PubMedID 36134711

    View details for PubMedCentralID PMC9561265

  • A Nodal enhanced micropeptide NEMEP regulates glucose uptake during mesendoderm differentiation of embryonic stem cells. Nature communications Fu, H., Wang, T., Kong, X., Yan, K., Yang, Y., Cao, J., Yuan, Y., Wang, N., Kee, K., Lu, Z. J., Xi, Q. 2022; 13 (1): 3984

    Abstract

    TGF-β family proteins including Nodal are known as central regulators of early development in metazoans, yet our understanding of the scope of Nodal signaling's downstream targets and associated physiological mechanisms in specifying developmentally appropriate cell fates is far from complete. Here, we identified a highly conserved, transmembrane micropeptide-NEMEP-as a direct target of Nodal signaling in mesendoderm differentiation of mouse embryonic stem cells (mESCs), and this micropeptide is essential for mesendoderm differentiation. We showed that NEMEP interacts with the glucose transporters GLUT1/GLUT3 and promotes glucose uptake likely through these interactions. Thus, beyond expanding the scope of known Nodal signaling targets in early development and showing that this target micropeptide augments the glucose uptake during mesendoderm differentiation, our study provides a clear example for the direct functional impact of altered glucose metabolism on cell fate determination.

    View details for DOI 10.1038/s41467-022-31762-x

    View details for PubMedID 35810171

    View details for PubMedCentralID PMC9271079

  • Proteomic profiling of HIV-1 infection of human CD4+ T cells identifies PSGL-1 as an HIV restriction factor. Nature microbiology Liu, Y., Fu, Y., Wang, Q., Li, M., Zhou, Z., Dabbagh, D., Fu, C., Zhang, H., Li, S., Zhang, T., Gong, J., Kong, X., Zhai, W., Su, J., Sun, J., Zhang, Y., Yu, X. F., Shao, Z., Zhou, F., Wu, Y., Tan, X. 2019; 4 (5): 813-825

    Abstract

    Human immunodeficiency virus (HIV) actively modulates the protein stability of host cells to optimize viral replication. To systematically examine this modulation in HIV infection, we used isobaric tag-based mass spectrometry to quantify changes in the abundance of over 14,000 proteins during HIV-1 infection of human primary CD4+ T cells. We identified P-selectin glycoprotein ligand 1 (PSGL-1) as an HIV-1 restriction factor downregulated by HIV-1 Vpu, which binds to PSGL-1 and induces its ubiquitination and degradation through the ubiquitin ligase SCFβ-TrCP2. PSGL-1 is induced by interferon-γ in activated CD4+ T cells to inhibit HIV-1 reverse transcription and potently block viral infectivity by incorporating in progeny virions. This infectivity block is antagonized by Vpu via PSGL-1 degradation. We further show that PSGL-1 knockdown can significantly abolish the anti-HIV activity of interferon-γ in primary CD4+ T cells. Our study identifies an HIV restriction factor and a key mediator of interferon-γ's anti-HIV activity.

    View details for DOI 10.1038/s41564-019-0372-2

    View details for PubMedID 30833724

    View details for PubMedCentralID 124589

  • Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility. Nature genetics Lin, Z., Li, S., Feng, C., Yang, S., Wang, H., Ma, D., Zhang, J., Gou, M., Bu, D., Zhang, T., Kong, X., Wang, X., Sarig, O., Ren, Y., Dai, L., Liu, H., Zhang, J., Li, F., Hu, Y., Padalon-Brauch, G., Vodo, D., Zhou, F., Chen, T., Deng, H., Sprecher, E., Yang, Y., Tan, X. 2016; 48 (12): 1508-1516

    Abstract

    Skin integrity is essential for protection from external stress and trauma. Defects in structural proteins such as keratins cause skin fragility, epitomized by epidermolysis bullosa (EB), a life-threatening disorder. Here we show that dominant mutations of KLHL24, encoding a cullin 3-RBX1 ubiquitin ligase substrate receptor, cause EB. We have identified start-codon mutations in the KLHL24 gene in five patients with EB. These mutations lead to truncated KLHL24 protein lacking the initial 28 amino acids (KLHL24-ΔN28). KLHL24-ΔN28 is more stable than its wild-type counterpart owing to abolished autoubiquitination. We have further identified keratin 14 (KRT14) as a KLHL24 substrate and found that KLHL24-ΔN28 induces excessive ubiquitination and degradation of KRT14. Using a knock-in mouse model, we have confirmed that the Klhl24 mutations lead to stabilized Klhl24-ΔN28 and cause Krt14 degradation. Our findings identify a new disease-causing mechanism due to dysregulation of autoubiquitination and open new avenues for the treatment of related disorders.

    View details for DOI 10.1038/ng.3701

    View details for PubMedID 27798626