Stanford Advisors


All Publications


  • Capture of Hydroxyl Radicals by Hydronium Cations in Water Microdroplets. Angewandte Chemie (International ed. in English) Xing, D., Meng, Y., Yuan, X., Jin, S., Song, X., Zare, R. N., Zhang, X. 2022

    Abstract

    Despite the high stability of bulk water, water microdroplets possess strikingly different properties, such as the presence of hydroxyl radicals (OH) at the air-water interface. Previous studies exhibited the recombination of OH into H 2 O 2 molecules and the capture of OH by oxidizing other molecules. By spraying pure water microdroplets into a mass spectrometer, we detected OH in the form of (H 4 O 2 ) + that is essentially OH--H 3 O + , a hydroxyl radical combined with a hydronium cation through hydrogen bonding. We also successfully captured it with two OH scavengers, caffeine and melatonin, and key oxidation radical intermediates that bear important mechanistic information were seen. It is suggested that some previous reactions involving (H 4 O 2 ) + should be attributed to reactions with OH--H 3 O + rather than with the water dimer cation (H 2 O-OH 2 ) + .

    View details for DOI 10.1002/anie.202207587

    View details for PubMedID 35700155

  • Sprayed water microdroplets containing dissolved pyridine spontaneously generate pyridyl anions. Proceedings of the National Academy of Sciences of the United States of America Zhao, L., Song, X., Gong, C., Zhang, D., Wang, R., Zare, R. N., Zhang, X. 2022; 119 (12): e2200991119

    Abstract

    SignificanceWater microdroplets can accelerate chemical reactions by orders of magnitude compared to the same reactions in bulk water and/or trigger spontaneous reactions that do not occur in bulk solution. Among the properties of water microdroplets, the unique redox ability resulting from the spontaneous dissociation of OH- into a released electron and OH at the air-water interfaces is especially intriguing. At the air-water interface, OH- exhibits a strong reducing potential, and the resulting OH is highly oxidative, making water microdroplets a unity of opposites. We report the reduction of pyridine into pyridyl anions (C5H5N-) and the oxidation of pyridine into hydroxypyridine, which extends what we know about the redox power of water microdroplets.

    View details for DOI 10.1073/pnas.2200991119

    View details for PubMedID 35286201

  • Hydrogen-Deuterium Exchange Desorption Electrospray Ionization Mass Spectrometry Visualizes an Acidic Tumor Microenvironment. Analytical chemistry Song, X., Zang, Q., Zare, R. N. 2021

    Abstract

    We report that microdroplet hydrogen-deuterium exchange (HDX) detected by desorption electrospray ionization mass spectrometry imaging (DESI-MSI) allows the measurement of the acidity of a tissue sample. The integration of HDX and DESI-MSI has been applied to visualize the acidic tumor microenvironment (TME). HDX-DESI-MSI enables the simultaneous collection of regional pH variation and its corresponding in-depth metabolomic changes. This technique is a cost-effective tool for providing insight into the pH-dependent tumor metabolism heterogeneity.

    View details for DOI 10.1021/acs.analchem.1c02026

    View details for PubMedID 34279072

  • Distinguishing between Isobaric Ions Using Microdroplet Hydrogen–Deuterium Exchange Mass Spectrometry Metabolites Song, X., Li, J., Mofidfar, M., Zare, R. N. 2021

    View details for DOI 10.3390/metabo11110728

  • In situ DESI-MSI lipidomic profiles of mucosal margin of oral squamous cell carcinoma. EBioMedicine Yang, X., Song, X., Zhang, X., Shankar, V., Wang, S., Yang, Y., Chen, S., Zhang, L., Ni, Y., Zare, R. N., Hu, Q. 2021; 70: 103529

    Abstract

    Although there is consensus that the optimal safe margin is ≥ 5mm, obtaining clear margins (≥5 mm) intraoperatively seems to be the major challenge. We applied a molecular diagnostic method at the lipidomic level to determine the safe surgical resection margin of OSCC by desorption electrospray ionisation mass spectrometry imaging (DESI-MSI).By overlaying mass spectrometry images with hematoxylin-eosin staining (H&E) from 18 recruited OSCC participants, the mass spectra of all pixels across the diagnosed tumour and continuous mucosal margin regions were extracted to serve as the training and validation datasets. A Lasso regression model was used to evaluate the test performance.By leave-one-out validation, the Lasso model achieved 88.6% accuracy in distinguishing between tumour and normal regions. To determine the safe surgical resection distance and margin status of OSCC, a set of 14 lipid ions that gradually decreased from tumour to normal tissue was assigned higher weight coefficients in the Lasso model. The safe surgical resection distance of OSCC was measured using the developed 14 lipid ion molecular diagnostic model for clinical reference. The overall accuracy of predicting tumours, positive margins, and negative margins was 92.6%.The spatial segmentation results based on our diagnostic model not only clearly delineated the tumour and normal tissue, but also distinguished the different status of surgical margins. Meanwhile, the safe surgical resection margin of OSCC on frozen sections can also be accurately measured using the developed diagnostic model.This study was supported by Nanjing Municipal Key Medical Laboratory Constructional Project Funding (since 2016) and the Centre of Nanjing Clinical Medicine Tumour (since 2014).

    View details for DOI 10.1016/j.ebiom.2021.103529

    View details for PubMedID 34391097

  • Big cohort metabolomic profiling of serum for oral squamous cell carcinoma screening and diagnosis Natural Sciences Yang, X., Song, X., Yang, X., Han, W., Fu, Y., Wang, S., Zhong, X., Lu, Y., Sun, G., Wang, Z., Ni, Y., Zare, R. N., Hu, Q. 2021; 1 (1)
  • Introducing Nafion for In Situ Desalting and Biofluid Profiling in Spray Mass Spectrometry. Frontiers in chemistry Song, X., Mofidfar, M., Zare, R. N. 2021; 9: 807244

    Abstract

    We introduce Nafion into the ambient ionization technique of spray mass spectrometry to serve for in situ desalting and direct analysis of biological fluids. Nafion was coated onto the surface of the triangular spray tip as the cation exchange material. Because the sulfonic group from the Nafion membrane effectively exchanges their carried protons with inorganic salt ions (e.g., Na+ and K+), the analyte's ionization efficiency can be significantly enhanced by reducing ion suppression. The desalting efficiency can reach 90% and the maximum tolerance of the absolute salt amount reaches 100 μmol. The mass spectral profile can also be simplified by removing the multiple adducted ion types from small-molecule drugs and metabolites ([M + Na]+ and [M + K]+), or multiply charged ions formed by proteins ([M + nNa]n+ and [M + nK]n+). Thus, the Nafion coating makes less ambiguous data interpretation collected from spray mass spectrometry for qualitative profiling or quantitative measurement of a target analyte.

    View details for DOI 10.3389/fchem.2021.807244

    View details for PubMedID 35145954

    View details for PubMedCentralID PMC8821663

  • Coulometry-assisted quantitation in spray ionization mass spectrometry. Journal of mass spectrometry : JMS Song, X., Chen, H., Zare, R. N. 2020: e4628

    Abstract

    The concentration of target analyte in a mixture can be quantified by combining coulometric measurements with spray ionization mass spectrometry. A three-electrode system screen printed on the polymer support acts both as the coulometry platform for electrochemical oxidation and the sample loading tip for spray ionization. After loading a droplet of the analyte solution onto the tip, two steps were taken to implement quantitation. First, the electrochemical oxidation potential was optimized with cyclic voltammetry followed by coulometric measurements to calculate the amount of oxidized analyte under a constant low voltage within a fixed period of time (5 s). Then, a high voltage (+4.5 kV) was applied to the tip to trigger spray ionization for measuring the oxidation yield from the native analyte ion and its oxidized product ion intensities by mass spectrometry. The analyte's native concentration is quantified by dividing the oxidized product's concentration (based on Coulomb's law) and the oxidation yield (estimated from mass spectrometry [MS] assuming that the parent and oxidation product have nearly the same ionization efficiencies). The workflow has an advantage in being free of any standard for constructing the quantitation curve. Several model compounds (tyrosine, dopamine, and angiotensin II) were selected for method validation. It was demonstrated that this strategy was feasible with an accuracy of ~15% for a wide coverage of different species including endogenous metabolites and peptides. As an example of its possible practical use, it was initially employed to make a bilirubin assay in urine.

    View details for DOI 10.1002/jms.4628

    View details for PubMedID 33245185

  • Oral squamous cell carcinoma diagnosed from saliva metabolic profiling. Proceedings of the National Academy of Sciences of the United States of America Song, X., Yang, X., Narayanan, R., Shankar, V., Ethiraj, S., Wang, X., Duan, N., Ni, Y., Hu, Q., Zare, R. N. 2020

    Abstract

    Saliva is a noninvasive biofluid that can contain metabolite signatures of oral squamous cell carcinoma (OSCC). Conductive polymer spray ionization mass spectrometry (CPSI-MS) is employed to record a wide range of metabolite species within a few seconds, making this technique appealing as a point-of-care method for the early detection of OSCC. Saliva samples from 373 volunteers, 124 who are healthy, 124 who have premalignant lesions, and 125 who are OSCC patients, were collected for discovering and validating dysregulated metabolites and determining altered metabolic pathways. Metabolite markers were reconfirmed at the primary tissue level by desorption electrospray ionization MS imaging (DESI-MSI), demonstrating the reliability of diagnoses based on saliva metabolomics. With the aid of machine learning (ML), OSCC and premalignant lesions can be distinguished from the normal physical condition in real time with an accuracy of 86.7%, on a person by person basis. These results suggest that the combination of CPSI-MS and ML is a feasible tool for accurate, automated diagnosis of OSCC in clinical practice.

    View details for DOI 10.1073/pnas.2001395117

    View details for PubMedID 32601197

  • Conductive Polymer Spray Ionization Mass Spectrometry for Biofluid Analysis ANALYTICAL CHEMISTRY Song, X., Chen, H., Zare, R. N. 2018; 90 (21): 12878-12885

    Abstract

    We present a conductive polymer spray ionization (CPSI) method for the direct mass spectrometric analysis of hydrophilic drugs, saccharides, peptides, and proteins in biofluids. Carbon nanotubes (CNTs) were introduced into poly(methyl methacrylate) (PMMA) to fabricate a conductive composite substrate CNT/PMMA in the shape of a triangle (8 mm wide and 10 mm long) with its apex pointed toward the inlet of a mass spectrometer. In comparison with a traditional paper spray substrate, the conductive polymer absorbs less hydrophilic compounds owing to its hydrophobic nature. When aqueous biofluid samples are loaded, they also exhibit less diffusion on this nonporous surface. Only 1.0-2.0 μL solvent suffices to extract the components in a dried biofluid spot and to form charged microdroplets (4.5 kV high voltage applied). Furthermore, the hydrophobic polymer surface only needs to overcome weak surface tension to emit charged microdroplets, so that the signal has a typical duration of 7.5 min. For sunitinib, acarbose, melamine, and angiotensin II, the ion intensity of the target compound from the conductive polymer support is significantly higher than paper spray, typically by a factor of 20 to 100. These results suggest that the CNT/PMMA conductive polymer spray has great potential in the analysis of hydrophilic drugs, saccharides, peptides, and proteins in biofluids.

    View details for DOI 10.1021/acs.analchem.8b03460

    View details for Web of Science ID 000449722500076

    View details for PubMedID 30247892