Stanford Advisors


All Publications


  • GhostKnockoff inference empowers identification of putative causal variants in genome-wide association studies. Nature communications He, Z., Liu, L., Belloy, M. E., Le Guen, Y., Sossin, A., Liu, X., Qi, X., Ma, S., Gyawali, P. K., Wyss-Coray, T., Tang, H., Sabatti, C., Candes, E., Greicius, M. D., Ionita-Laza, I. 2022; 13 (1): 7209

    Abstract

    Recent advances in genome sequencing and imputation technologies provide an exciting opportunity to comprehensively study the contribution of genetic variants to complex phenotypes. However, our ability to translate genetic discoveries into mechanistic insights remains limited at this point. In this paper, we propose an efficient knockoff-based method, GhostKnockoff, for genome-wide association studies (GWAS) that leads to improved power and ability to prioritize putative causal variants relative to conventional GWAS approaches. The method requires only Z-scores from conventional GWAS and hence can be easily applied to enhance existing and future studies. The method can also be applied to meta-analysis of multiple GWAS allowing for arbitrary sample overlap. We demonstrate its performance using empirical simulations and two applications: (1) a meta-analysis for Alzheimer's disease comprising nine overlapping large-scale GWAS, whole-exome and whole-genome sequencing studies and (2) analysis of 1403 binary phenotypes from the UK Biobank data in 408,961 samples of European ancestry. Our results demonstrate that GhostKnockoff can identify putatively functional variants with weaker statistical effects that are missed by conventional association tests.

    View details for DOI 10.1038/s41467-022-34932-z

    View details for PubMedID 36418338

  • A supervised protein complex prediction method with network representation learning and gene ontology knowledge. BMC bioinformatics Wang, X., Zhang, Y., Zhou, P., Liu, X. 2022; 23 (1): 300

    Abstract

    BACKGROUND: Protein complexes are essential for biologists to understand cell organization and function effectively. In recent years, predicting complexes from protein-protein interaction (PPI) networks through computational methods is one of the current research hotspots. Many methods for protein complex prediction have been proposed. However, how to use the information of known protein complexes is still a fundamental problem that needs to be solved urgently in predicting protein complexes.RESULTS: To solve these problems, we propose a supervised learning method based on network representation learning and gene ontology knowledge, which can fully use the information of known protein complexes to predict new protein complexes. This method first constructs a weighted PPI network based on gene ontology knowledge and topology information, reducing the network's noise problem. On this basis, the topological information of known protein complexes is extracted as features, and the supervised learning model SVCC is obtained according to the feature training. At the same time, the SVCC model is used to predict candidate protein complexes from the protein interaction network. Then, we use the network representation learning method to obtain the vector representation of the protein complex and train the random forest model. Finally, we use the random forest model to classify the candidate protein complexes to obtain the final predicted protein complexes. We evaluate the performance of the proposed method on two publicly PPI data sets.CONCLUSIONS: Experimental results show that our method can effectively improve the performance of protein complex recognition compared with existing methods. In addition, we also analyze the biological significance of protein complexes predicted by our method and other methods. The results show that the protein complexes predicted by our method have high biological significance.

    View details for DOI 10.1186/s12859-022-04850-4

    View details for PubMedID 35879648

  • A Scalable Embedding Based Neural Network Method for Discovering Knowledge From Biomedical Literature IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS Sang, S., Liu, X., Chen, X., Zhao, D. 2022; 19 (3): 1294-1301

    Abstract

    Nowadays, the amount of biomedical literatures is growing at an explosive speed, and much useful knowledge is yet undiscovered in the literature. Classical information retrieval techniques allow to access explicit information from a given collection of information, but are not able to recognize implicit connections. Literature-based discovery (LBD) is characterized by uncovering hidden associations in non-interacting literature. It could significantly support scientific research by identifying new connections between biomedical entities. However, most of the existing approaches to LBD are not scalable and may not be sufficient to detect complex associations in non-directly-connected literature. In this article, we present a model which incorporates biomedical knowledge graph, graph embedding, and deep learning methods for literature-based discovery. First, the relations between biomedical entities are extracted from biomedical abstracts and then a knowledge graph is constructed by using these obtained relations. Second, the graph embedding technologies are applied to convert the entities and relations in the knowledge graph into a low-dimensional vector space. Third, a bidirectional Long Short-Term Memory (BLSTM) network is trained based on the entity associations represented by the pre-trained graph embeddings. Finally, the learned model is used for open and closed literature-based discovery tasks. The experimental results show that our method could not only effectively discover hidden associations between entities, but also reveal the corresponding mechanism of interactions. It suggests that incorporating knowledge graph and deep learning methods is an effective way for capturing the underlying complex associations between entities hidden in the literature.

    View details for DOI 10.1109/TCBB.2020.3003947

    View details for Web of Science ID 000805807200006

    View details for PubMedID 32750871

  • KGSG: Knowledge Guided Syntactic Graph Model for Drug-Drug Interaction Extraction Du, W., Zhang, Y., Yang, M., Liu, D., Liu, X., Sun, M., Qi, G., Liu, K., Ren, J., Xu, B., Feng, Y., Liu, Y., Chen, Y. SPRINGER INTERNATIONAL PUBLISHING AG. 2022: 55-67