Stanford Advisors


All Publications


  • Blip up-down acquisition for spin- and gradient-echo imaging (BUDA-SAGE) with self-supervised denoising enables efficient T2 , T2 *, para- and dia-magnetic susceptibility mapping. Magnetic resonance in medicine Zhang, Z., Cho, J., Wang, L., Liao, C., Shin, H. G., Cao, X., Lee, J., Xu, J., Zhang, T., Ye, H., Setsompop, K., Liu, H., Bilgic, B. 2022

    Abstract

    To rapidly obtain high resolution T2 , T2 *, and quantitative susceptibility mapping (QSM) source separation maps with whole-brain coverage and high geometric fidelity.We propose Blip Up-Down Acquisition for Spin And Gradient Echo imaging (BUDA-SAGE), an efficient EPI sequence for quantitative mapping. The acquisition includes multiple T2 *-, T2 '-, and T2 -weighted contrasts. We alternate the phase-encoding polarities across the interleaved shots in this multi-shot navigator-free acquisition. A field map estimated from interim reconstructions was incorporated into the joint multi-shot EPI reconstruction with a structured low rank constraint to eliminate distortion. A self-supervised neural network (NN), MR-Self2Self (MR-S2S), was used to perform denoising to boost SNR. Using Slider encoding allowed us to reach 1 mm isotropic resolution by performing super-resolution reconstruction on volumes acquired with 2 mm slice thickness. Quantitative T2 (=1/R2 ) and T2 * (=1/R2 *) maps were obtained using Bloch dictionary matching on the reconstructed echoes. QSM was estimated using nonlinear dipole inversion on the gradient echoes. Starting from the estimated R2 /R2 * maps, R2 ' information was derived and used in source separation QSM reconstruction, which provided additional para- and dia-magnetic susceptibility maps.In vivo results demonstrate the ability of BUDA-SAGE to provide whole-brain, distortion-free, high-resolution, multi-contrast images and quantitative T2 /T2 * maps, as well as yielding para- and dia-magnetic susceptibility maps. Estimated quantitative maps showed comparable values to conventional mapping methods in phantom and in vivo measurements.BUDA-SAGE acquisition with self-supervised denoising and Slider encoding enables rapid, distortion-free, whole-brain T2 /T2 * mapping at 1 mm isotropic resolution under 90 s.

    View details for DOI 10.1002/mrm.29219

    View details for PubMedID 35436357

  • Optimized multi-axis spiral projection MR fingerprinting with subspace reconstruction for rapid whole-brain high-isotropic-resolution quantitative imaging. Magnetic resonance in medicine Cao, X., Liao, C., Iyer, S. S., Wang, Z., Zhou, Z., Dai, E., Liberman, G., Dong, Z., Gong, T., He, H., Zhong, J., Bilgic, B., Setsompop, K. 2022

    Abstract

    PURPOSE: To improve image quality and accelerate the acquisition of 3D MR fingerprinting (MRF).METHODS: Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low-rank constraint and a modified spiral-projection spatiotemporal encoding scheme called tiny golden-angle shuffling were implemented for rapid whole-brain high-resolution quantitative mapping. Reconstruction parameters such as the locally low-rank regularization parameter and the subspace rank were tuned using retrospective in vivo data and simulated examinations. B0 inhomogeneity correction using multifrequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect.RESULTS: The proposed MRF acquisition and reconstruction framework yields high-quality 1-mm isotropic whole-brain quantitative maps in 2min at better quality compared with 6-min acquisitions of prior approaches. The proposed method was validated to not induce bias in T1 and T2 mapping. High-quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4min using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures.CONCLUSIONS: The proposed tiny golden-angle shuffling, MRF with optimized spiral-projection trajectory and subspace reconstruction enables high-resolution quantitative mapping in ultrafast acquisition time.

    View details for DOI 10.1002/mrm.29194

    View details for PubMedID 35199877