Professional Education

  • Master of Science, Imperial College London, Bioengineering with neurotechnology (2015)
  • Diplome d'ingénieur, Télécom Paristech, Computer Science, Electronic (2015)
  • Doctor of Philosophy, Neurospin, CEA, Université Paris-Saclay, MR imaging, Neuroscience, Imaging-genetic (2018)

Stanford Advisors

All Publications

  • Confirming Pathogenicity of the F386L PSEN1 Variant in a South Asian Family With Early-Onset Alzheimer Disease. Neurology. Genetics Eger, S. J., Le Guen, Y., Khan, R. R., Hall, J. N., Kennedy, G., Zaharchuk, G., Couthouis, J., Brooks, W. S., Velakoulis, D., Napolioni, V., Belloy, M. E., Dalgard, C. L., Mormino, E. C., Gitler, A. D., Greicius, M. D. 1800; 8 (1): e647


    Objectives: The F386L PSEN1 variant has been reported in 1 Japanese family with limited clinical information. We aimed to prove that F386L is pathogenic by demonstrating that it segregates with early-onset Alzheimer disease (AD).Methods: Eight individuals in a South Asian family provided DNA for genetic testing and underwent a neurologic examination.Results: The female proband was diagnosed with AD at age 45 years and died at age 49 years. She had a CSF biomarker profile consistent with AD, and her florbetaben PET scan was amyloid positive with high uptake in the striatum. Her MRI showed no prominent white matter disease. Her affected relatives had an age at onset range of 38-57 years and had imaging and biomarker profiles similar to hers.Discussion: The results presented here, in conjunction with the prior report, confirm the pathogenicity of F386L. Furthermore, our study highlights the importance of studying families from underrepresented populations to identify or confirm the pathogenicity of rare variants that may be specific to certain genetic ancestries.

    View details for DOI 10.1212/NXG.0000000000000647

    View details for PubMedID 34901437

  • Identification of putative causal loci in whole-genome sequencing data via knockoff statistics. Nature communications He, Z., Liu, L., Wang, C., Le Guen, Y., Lee, J., Gogarten, S., Lu, F., Montgomery, S., Tang, H., Silverman, E. K., Cho, M. H., Greicius, M., Ionita-Laza, I. 2021; 12 (1): 3152


    The analysis of whole-genome sequencing studies is challenging due to the large number of rare variants in noncoding regions and the lack of natural units for testing. We propose a statistical method to detect and localize rare and common risk variants in whole-genome sequencing studies based on a recently developed knockoff framework. It can (1) prioritize causal variants over associations due to linkage disequilibrium thereby improving interpretability; (2) help distinguish the signal due to rare variants from shadow effects of significant common variants nearby; (3) integrate multiple knockoffs for improved power, stability, and reproducibility; and (4) flexibly incorporate state-of-the-art and future association tests to achieve the benefits proposed here. In applications to whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP) and COPDGene samples from NHLBI Trans-Omics for Precision Medicine (TOPMed) Program we show that our method compared with conventional association tests can lead to substantially more discoveries.

    View details for DOI 10.1038/s41467-021-22889-4

    View details for PubMedID 34035245

  • A novel age-informed approach for genetic association analysis in Alzheimer's disease. Alzheimer's research & therapy Le Guen, Y., Belloy, M. E., Napolioni, V., Eger, S. J., Kennedy, G., Tao, R., He, Z., Greicius, M. D., Alzheimers Disease Neuroimaging Initiative 2021; 13 (1): 72


    BACKGROUND: Many Alzheimer's disease (AD) genetic association studies disregard age or incorrectly account for it, hampering variant discovery.METHODS: Using simulated data, we compared the statistical power of several models: logistic regression on AD diagnosis adjusted and not adjusted for age; linear regression on a score integrating case-control status and age; and multivariate Cox regression on age-at-onset. We applied these models to real exome-wide data of 11,127 sequenced individuals (54% cases) and replicated suggestive associations in 21,631 genotype-imputed individuals (51% cases).RESULTS: Modeling variable AD risk across age results in 5-10% statistical power gain compared to logistic regression without age adjustment, while incorrect age adjustment leads to critical power loss. Applying our novel AD-age score and/or Cox regression, we discovered and replicated novel variants associated with AD on KIF21B, USH2A, RAB10, RIN3, and TAOK2 genes.CONCLUSION: Our AD-age score provides a simple means for statistical power gain and is recommended for future AD studies.

    View details for DOI 10.1186/s13195-021-00808-5

    View details for PubMedID 33794991

  • Common X-chromosome variants are associated with Parkinson's disease risk. Annals of neurology Le Guen, Y., Napolioni, V., Belloy, M. E., Yu, E., Krohn, L., Ruskey, J. A., Gan-Or, Z., Kennedy, G., Eger, S. J., Greicius, M. D. 2021


    OBJECTIVE: Identify genetic variants on the X-chromosome associated with Parkinson's disease (PD) risk.METHODS: We performed an X-chromosome-wide association study (XWAS) of PD risk by meta-analyzing results from sex-stratified analyses. To avoid spurious associations, we designed a specific harmonization pipeline for the X-chromosome and focused on a European ancestry sample. We included 11,142 cases, 280,164 controls, and 5,379 proxy cases, based on parental history of PD. Additionally, we tested the association of significant variants with: (i) PD risk in an independent replication with 1,561 cases and 2,465 controls, and (ii) putamen volume in 33,360 individuals from the UK Biobank.RESULTS: In the discovery meta-analysis, we identified: rs7066890 (OR=1.10 [1.06-1.14]; P=2.2x10-9 ) intron of GPM6B, and rs28602900 (OR=1.10 [1.07-1.14]; P=1.6x10-8 ) in a high gene density region including RPL10, ATP6A1, FAM50A, PLXNA3. The rs28602900 association with PD was replicated (OR=1.16 [1.03-1.30]; P=0.016) and shown to colocalize with a significant expression quantitative locus (eQTL) regulating RPL10 expression in the putamen and other brain tissues in GTEx. Additionally, the rs28602900 locus was found to be associated with reduced brain putamen volume. No results reached genome-wide significance in the sex-stratified analyses.INTERPRETATION: We report the first XWAS of PD and identify two genome-wide significant loci. The rs28602900 association replicated in an independent PD dataset and showed concordant effects in its association with putamen volume. Critically, rs26802900 is a significant eQTL of RPL10.These results support a role for ribosomal proteins in PD pathogenesis and show that the X-chromosome contributes to PD genetic risk. This article is protected by copyright. All rights reserved.

    View details for DOI 10.1002/ana.26051

    View details for PubMedID 33583074

  • KLVS heterozygosity reduces brain amyloid in asymptomatic at-risk APOE4 carriers. Neurobiology of aging Belloy, M. E., Eger, S. J., Le Guen, Y., Napolioni, V., Deters, K. D., Yang, H., Scelsi, M. A., Porter, T., James, S., Wong, A., Schott, J. M., Sperling, R. A., Laws, S. M., Mormino, E. C., He, Z., Han, S. S., Altmann, A., Greicius, M. D., A4 Study Team, Insight 46 Study Team, Australian Imaging Biomarkers and Lifestyle (AIBL) Study, Alzheimer's Disease Neuroimaging Initiative 2021; 101: 123–29


    KLOTHOVS heterozygosity (KLVSHET+) was recently shown to be associated with reduced risk of Alzheimer's disease (AD) in APOE4 carriers. Additional studies suggest that KLVSHET+ protects against amyloid burden in cognitively normal older subjects, but sample sizes were too small to draw definitive conclusions. We performed a well-powered meta-analysis across 5 independent studies, comprising 3581 pre-clinical participants ages 60-80, to investigate whether KLVSHET+ reduces the risk of having an amyloid-positive positron emission tomography scan. Analyses were stratified by APOE4 status. KLVSHET+ reduced the risk of amyloid positivity in APOE4 carriers (odds ratio= 0.67 [0.52-0.88]; p= 3.5*10-3), but not in APOE4 non-carriers (odds ratio= 0.94 [0.73-1.21]; p= 0.63). The combination of APOE4 and KLVS genotypes should help enrich AD clinical trials for pre-symptomatic subjects at increased risk of developing amyloid aggregation and AD. KL-related pathways may help elucidate protective mechanisms against amyloid accumulation and merit exploration for novel AD drug targets. Future investigation of the biological mechanisms by which KL interacts with APOE4 and AD are warranted.

    View details for DOI 10.1016/j.neurobiolaging.2021.01.008

    View details for PubMedID 33610961

  • Genome-wide analysis of common and rare variants via multiple knockoffs at biobank scale, with an application to Alzheimer disease genetics. American journal of human genetics He, Z., Le Guen, Y., Liu, L., Lee, J., Ma, S., Yang, A. C., Liu, X., Rutledge, J., Losada, P. M., Song, B., Belloy, M. E., Butler, R. R., Longo, F. M., Tang, H., Mormino, E. C., Wyss-Coray, T., Greicius, M. D., Ionita-Laza, I. 2021


    Knockoff-based methods have become increasingly popular due to their enhanced power for locus discovery and their ability to prioritize putative causal variants in a genome-wide analysis. However, because of the substantial computational cost for generating knockoffs, existing knockoff approaches cannot analyze millions of rare genetic variants in biobank-scale whole-genome sequencing and whole-genome imputed datasets. We propose a scalable knockoff-based method for the analysis of common and rare variants across the genome, KnockoffScreen-AL, that is applicable to biobank-scale studies with hundreds of thousands of samples and millions of genetic variants. The application of KnockoffScreen-AL to the analysis of Alzheimer disease (AD) in 388,051 WG-imputed samples from the UK Biobank resulted in 31 significant loci, including 14 loci that are missed by conventional association tests on these data. We perform replication studies in an independent meta-analysis of clinically diagnosed AD with 94,437 samples, and additionally leverage single-cell RNA-sequencing data with 143,793 single-nucleus transcriptomes from 17 control subjects and AD-affected individuals, and proteomics data from 735 control subjects and affected indviduals with AD and related disorders to validate the genes at these significant loci. These multi-omics analyses show that 79.1% of the proximal genes at these loci and 76.2% of the genes at loci identified only by KnockoffScreen-AL exhibit at least suggestive signal (p < 0.05) in the scRNA-seq or proteomics analyses. We highlight a potentially causal gene in AD progression, EGFR, that shows significant differences in expression and protein levels between AD-affected individuals and healthy control subjects.

    View details for DOI 10.1016/j.ajhg.2021.10.009

    View details for PubMedID 34767756

  • Association of Klotho-VS Heterozygosity With Risk of Alzheimer Disease in Individuals Who Carry APOE4. JAMA neurology Belloy, M. E., Napolioni, V. n., Han, S. S., Le Guen, Y. n., Greicius, M. D. 2020


    Identification of genetic factors that interact with the apolipoprotein e4 (APOE4) allele to reduce risk for Alzheimer disease (AD) would accelerate the search for new AD drug targets. Klotho-VS heterozygosity (KL-VSHET+ status) protects against aging-associated phenotypes and cognitive decline, but whether it protects individuals who carry APOE4 from AD remains unclear.To determine if KL-VSHET+ status is associated with reduced AD risk and β-amyloid (Aβ) pathology in individuals who carry APOE4.This study combined 25 independent case-control, family-based, and longitudinal AD cohorts that recruited referred and volunteer participants and made data available through public repositories. Analyses were stratified by APOE4 status. Three cohorts were used to evaluate conversion risk, 1 provided longitudinal measures of Aβ CSF and PET, and 3 provided cross-sectional measures of Aβ CSF. Genetic data were available from high-density single-nucleotide variant microarrays. All data were collected between September 2015 and September 2019 and analyzed between April 2019 and December 2019.The risk of AD was evaluated through logistic regression analyses under a case-control design. The risk of conversion to mild cognitive impairment (MCI) or AD was evaluated through competing risks regression. Associations with Aβ, measured from cerebrospinal fluid (CSF) or brain positron emission tomography (PET), were evaluated using linear regression and mixed-effects modeling.Of 36 530 eligible participants, 13 782 were excluded for analysis exclusion criteria or refusal to participate. Participants were men and women aged 60 years and older who were non-Hispanic and of Northwestern European ancestry and had been diagnosed as being cognitively normal or having MCI or AD. The sample included 20 928 participants in case-control studies, 3008 in conversion studies, 556 in Aβ CSF regression analyses, and 251 in PET regression analyses. The genotype KL-VSHET+ was associated with reduced risk for AD in individuals carrying APOE4 who were 60 years or older (odds ratio, 0.75 [95% CI, 0.67-0.84]; P = 7.4 × 10-7), and this was more prominent at ages 60 to 80 years (odds ratio, 0.69 [95% CI, 0.61-0.79]; P = 3.6 × 10-8). Additionally, control participants carrying APOE4 with KL-VS heterozygosity were at reduced risk of converting to MCI or AD (hazard ratio, 0.64 [95% CI, 0.44-0.94]; P = .02). Finally, in control participants who carried APOE4 and were aged 60 to 80 years, KL-VS heterozygosity was associated with higher Aβ in CSF (β, 0.06 [95% CI, 0.01-0.10]; P = .03) and lower Aβ on PET scans (β, -0.04 [95% CI, -0.07 to -0.00]; P = .04).The genotype KL-VSHET+ is associated with reduced AD risk and Aβ burden in individuals who are aged 60 to 80 years, cognitively normal, and carrying APOE4. Molecular pathways associated with KL merit exploration for novel AD drug targets. The KL-VS genotype should be considered in conjunction with the APOE genotype to refine AD prediction models used in clinical trial enrichment and personalized genetic counseling.

    View details for DOI 10.1001/jamaneurol.2020.0414

    View details for PubMedID 32282020

  • Enhancer Locus in ch14q23.1 Modulates Brain Asymmetric Temporal Regions Involved in Language Processing. Cerebral cortex (New York, N.Y. : 1991) Le Guen, Y. n., Leroy, F. n., Philippe, C. n., Mangin, J. F., Dehaene-Lambertz, G. n., Frouin, V. n. 2020; 30 (10): 5322–32


    Identifying the genes that contribute to the variability in brain regions involved in language processing may shed light on the evolution of brain structures essential to the emergence of language in Homo sapiens. The superior temporal asymmetrical pit (STAP), which is not observed in chimpanzees, represents an ideal phenotype to investigate the genetic variations that support human communication. The left STAP depth was significantly associated with a predicted enhancer annotation located in the 14q23.1 locus, between DACT1 and KIAA0586, in the UK Biobank British discovery sample (N = 16 515). This association was replicated in the IMAGEN cohort (N = 1726) and the UK Biobank non-British validation sample (N = 2161). This genomic region was also associated to a lesser extent with the right STAP depth and the formation of sulcal interruptions, "plis de passage," in the bilateral STAP but not with other structural brain MRI phenotypes, highlighting its notable association with the superior temporal regions. Diffusion MRI emphasized an association with the fractional anisotropy of the left auditory fibers of the corpus callosum and with networks involved in linguistic processing in resting-state functional MRI. Overall, this evidence demonstrates a specific relationship between this locus and the establishment of the superior temporal regions that support human communication.

    View details for DOI 10.1093/cercor/bhaa112

    View details for PubMedID 32432689

  • "Plis de passage" Deserve a Role in Models of the Cortical Folding Process BRAIN TOPOGRAPHY Mangin, J., Le Guen, Y., Labra, N., Grigis, A., Frouin, V., Guevara, M., Fischer, C., Riviere, D., Hopkins, W. D., Regis, J., Sun, Z. 2019


    Cortical folding is a hallmark of brain topography whose variability across individuals remains a puzzle. In this paper, we call for an effort to improve our understanding of the pli de passage phenomenon, namely annectant gyri buried in the depth of the main sulci. We suggest that plis de passage could become an interesting benchmark for models of the cortical folding process. As an illustration, we speculate on the link between modern biological models of cortical folding and the development of the Pli de Passage Frontal Moyen (PPFM) in the middle of the central sulcus. For this purpose, we have detected nine interrupted central sulci in the Human Connectome Project dataset, which are used to explore the organization of the hand sensorimotor areas in this rare configuration of the PPFM.

    View details for DOI 10.1007/s10548-019-00734-8

    View details for Web of Science ID 000488894700001

    View details for PubMedID 31583493

  • eQTL of KCNK2 regionally influences the brain sulcal widening: evidence from 15,597 UK Biobank participants with neuroimaging data. Brain structure & function Le Guen, Y., Philippe, C., Riviere, D., Lemaitre, H., Grigis, A., Fischer, C., Dehaene-Lambertz, G., Mangin, J., Frouin, V. 2018


    The grey and white matter volumes are known to reduce with age. This cortical shrinkage is visible on magnetic resonance images and is conveniently identified by the increased volume of cerebrospinal fluid in the sulci between two gyri. Here, we replicated this finding using the UK Biobank dataset and studied the genetic influence on these cortical features of aging. We divided all individuals genetically confirmed of British ancestry into two sub-cohorts (12,162 and 3435 subjects for discovery and replication samples, respectively). We found that the heritability of the sulcal opening ranges from 15 to 45% (SE = 4.8%). We identified 4 new loci that contribute to this opening, including one that also affects the sulci grey matter thickness. We identified the most significant variant (rs864736) on this locus as being an expression quantitative trait locus (eQTL) for the KCNK2 gene. This gene regulates the immune-cell into the central nervous system (CNS) and controls the CNS inflammation, which is implicated in cortical atrophy and cognitive decline. These results expand our knowledge of the genetic contribution to cortical shrinking and promote further investigation into these variants and genes in pathological context such as Alzheimer's disease in which brain shrinkage is a key biomarker.

    View details for DOI 10.1007/s00429-018-1808-9

    View details for PubMedID 30519892

  • Shared genetic aetiology between cognitive performance and brain activations in language and math tasks SCIENTIFIC REPORTS Le Guen, Y., Amalric, M., Pinel, P., Pallier, C., Frouin, V. 2018; 8: 17624


    Cognitive performance is highly heritable. However, little is known about common genetic influences on cognitive ability and brain activation when engaged in a cognitive task. The Human Connectome Project (HCP) offers a unique opportunity to study this shared genetic etiology with an extended pedigree of 785 individuals. To investigate this common genetic origin, we took advantage of the HCP dataset, which includes both language and mathematics activation tasks. Using the HCP multimodal parcellation, we identified areals in which inter-individual functional MRI (fMRI) activation variance was significantly explained by genetics. Then, we performed bivariate genetic analyses between the neural activations and behavioral scores, corresponding to the fMRI task accuracies, fluid intelligence, working memory and language performance. We observed that several parts of the language network along the superior temporal sulcus, as well as the angular gyrus belonging to the math processing network, are significantly genetically correlated with these indicators of cognitive performance. This shared genetic etiology provides insights into the brain areas where the human-specific genetic repertoire is expressed. Studying the association of polygenic risk scores, using variants associated with human cognitive ability and brain activation, would provide an opportunity to better understand where these variants are influential.

    View details for DOI 10.1038/s41598-018-35665-0

    View details for Web of Science ID 000452084600032

    View details for PubMedID 30514932

    View details for PubMedCentralID PMC6279777

  • The chaotic morphology of the left superior temporal sulcus is genetically constrained NEUROIMAGE Le Guen, Y., Leroy, F., Auzias, G., Riviere, D., Grigis, A., Mangin, J., Coulon, O., Dehaene-Lambertz, G., Frouin, V. 2018; 174: 297–307


    The asymmetry of the superior temporal sulcus (STS) has been identified as a species-specific feature of the human brain. The so-called superior temporal asymmetrical pit (STAP) area is observed from the last trimester of gestation onwards and is far less pronounced in the chimpanzee brain. This asymmetry is associated with more frequent sulcal interruptions, named plis de passage (PPs), leading to the irregular morphology of the left sulcus. In this paper, we aimed to characterize the variability, asymmetry, and heritability of these interruptions in the STS in comparison with the other main sulci. We developed an automated method to extract PPs across the cortex based on a highly reproducible grid of sulcal pits across individuals, which we applied to a subset of Human Connectome Project (HCP) subjects (N = 820). We report that only a few PPs across the cortex are genetically constrained, namely in the collateral, postcentral and superior temporal sulci and the calcarine fissure. Moreover, some PPs occur more often in one hemisphere than the other, namely in the precentral, postcentral, intraparietal sulci, as well as in both inferior and superior temporal sulci. Most importantly, we found that only the interruptions within the STAP region are both asymmetric and genetically constrained. Because this morphological pattern is located in an area of the left hemisphere related to speech, our results suggest structural constraints on the architecture of the linguistic network.

    View details for DOI 10.1016/j.neuroimage.2018.03.046

    View details for Web of Science ID 000438609100026

    View details for PubMedID 29571714

  • Genetic Influence on the Sulcal Pits: On the Origin of the First Cortical Folds CEREBRAL CORTEX Le Guen, Y., Auzias, G., Leroy, F., Noulhiane, M., Dehaene-Lambertz, G., Duchesnay, E., Mangin, J., Coulon, O., Frouin, V. 2018; 28 (6): 1922–33
  • PyPNS: Multiscale Simulation of a Peripheral Nerve in Python. Neuroinformatics Lubba, C. H., Le Guen, Y. n., Jarvis, S. n., Jones, N. S., Cork, S. C., Eftekhar, A. n., Schultz, S. R. 2018


    Bioelectronic Medicines that modulate the activity patterns on peripheral nerves have promise as a new way of treating diverse medical conditions from epilepsy to rheumatism. Progress in the field builds upon time consuming and expensive experiments in living organisms. To reduce experimentation load and allow for a faster, more detailed analysis of peripheral nerve stimulation and recording, computational models incorporating experimental insights will be of great help. We present a peripheral nerve simulator that combines biophysical axon models and numerically solved and idealised extracellular space models in one environment. We modelled the extracellular space as a three-dimensional resistive continuum governed by the electro-quasistatic approximation of the Maxwell equations. Potential distributions were precomputed in finite element models for different media (homogeneous, nerve in saline, nerve in cuff) and imported into our simulator. Axons, on the other hand, were modelled more abstractly as one-dimensional chains of compartments. Unmyelinated fibres were based on the Hodgkin-Huxley model; for myelinated fibres, we adapted the model proposed by McIntyre et al. in 2002 to smaller diameters. To obtain realistic axon shapes, an iterative algorithm positioned fibres along the nerve with a variable tortuosity fit to imaged trajectories. We validated our model with data from the stimulated rat vagus nerve. Simulation results predicted that tortuosity alters recorded signal shapes and increases stimulation thresholds. The model we developed can easily be adapted to different nerves, and may be of use for Bioelectronic Medicine research in the future.

    View details for DOI 10.1007/s12021-018-9383-z

    View details for PubMedID 29948844