Academic Appointments


  • Sr Research Engineer, Civil and Environmental Engineering

2017-18 Courses


All Publications


  • Additive remediation effectiveness of activated carbon amendment on fungal degradation of fluorene and its heteroatomic analogs: Dibenzofuran, dibenzothiophene, and carbazole Zhang, Z., Cho, Y., Wolfand, J., Choi, Y., Luthy, R. AMER CHEMICAL SOC. 2018
  • HOC mass transfer modeling with consideration of bioturbation and on-going sediment influx Cho, Y., Werner, D., Choi, Y., Luthy, R. AMER CHEMICAL SOC. 2018
  • Activated carbon amendment for treatment of sediment contaminated with DDT and other hydrophobic organic pollutants concentrated 10-100x more than prior studies Pritchard, C., Cho, Y., Luthy, R. AMER CHEMICAL SOC. 2018
  • Benzotriazole removal mechanisms in biofilters planted with Carex praegracilis Pritchard, C., Cho, Y., Ashoori, N. AMER CHEMICAL SOC. 2018
  • Bioturbation facilitates DDT sequestration by activated carbon against recontamination by sediment deposition. Environmental toxicology and chemistry Lin, D., Cho, Y., Tommerdahl, J. P., Werner, D., Luthy, R. G. 2018

    Abstract

    We evaluated bioturbation as a facilitator for in situ treatment with a thin layer of activated carbon to treat dichlorodiphenyltrichloroethane (DDT)-contaminated sediment and contaminant influx by sediment deposition. Using the freshwater worm Lumbriculus variegatus as a bioturbator, microcosm time-series studies were conducted for 4 mo and monitored for DDT flux and porewater concentration profiles by polyethylene passive samplers. With bioturbators present, the thin-layer activated carbon amendment reduced DDT flux by >90% compared with the same simulated scenario without activated carbon amendment. In contrast, a clean sediment cap without activated carbon was ineffective in reducing flux when bioturbation was present. In simulated scenarios with contaminant influx through deposition of contaminated sediment, bioturbation facilitated in situ activated carbon treatment, reducing 4-mo DDT flux by 77% compared with the same scenario without bioturbation. Porewater concentration profiles and activated carbon dose profiles confirmed effective mixing of activated carbon particles down to 1-cm depth. A mass transfer model was developed to predict flux with consideration of bioturbation and sediment deposition processes. Predicted flux values were consistent with experimental results and confirm that bioturbation activity helps reduce DDT sediment-to-water fluxes in activated carbon-treated sediment with recontamination by contaminated sediment deposition. To our knowledge, this is the first study to combine experimental and modeling results showing how bioturbation enhances activated carbon amendment effectiveness against ongoing contaminant influx by sediment deposition. Environ Toxicol Chem 2018;9999:1-9. © 2018 SETAC.

    View details for PubMedID 29521428

  • Assessment of hydrophobic organic contaminant availability in sediments after sorbent amendment and its complete removal ENVIRONMENTAL POLLUTION Wu, Y., Cho, Y., Luthy, R. G., Kim, K., Jung, J., Gala, W. R., Choi, Y. 2017; 231: 1380–87

    Abstract

    Sorbents amended to sediments in situ for sequestration of hydrophobic organic contaminants (HOCs) may be swept away from the treated sites due to hydrodynamic forces applied to the sediment surface. The purpose of this study is to examine the possibility of recovery of HOC availability in sorbent-amended sediment after complete removal of the sorbent. Sediment contact with an easily separable model sorbent Tenax beads for 28 days in a slurry phase resulted in 74-98% reduction in polycyclic aromatic hydrocarbon and polychlorinated biphenyl availability compared to the untreated controls. HOC availability in the sorbent-treated sediment slightly increased by sorbent removal and after one month of mixing in a slurry phase because the slowly-desorbing HOC fraction was released and repartitioned back to the sediment, partially replenishing the rapidly-desorbing HOC fraction. However, HOC availability did not further increase during an extended mixing period of 12 months suggesting that the repartitioning process was not an infinite source. HOC availability after the 12-month post-treatment mixing for the sorbent-treated sediment was 53-97% lower than that of the untreated sediment because of the combined effect of HOC mass removal from sediment (with the sorbent) and incomplete recovery of available HOC fraction in the sorbent-treated sediment.

    View details for PubMedID 28943348

  • Toolset for assessment of natural recovery from legacy contaminated sediment: Case study of Pallanza Bay, Lake Maggiore, Italy. Water research Lin, D., Cho, Y., Oen, A., Eek, E., Tommerdahl, J. P., Luthy, R. G. 2017; 121: 109-119

    Abstract

    The aim of this study was to develop a toolset that can be used by site managers to assess and monitor natural attenuation processes in sediments contaminated with legacy hydrophobic organic contaminants. The toolset is composed of sediment traps to measure quality and deposition rate of incoming sediment under different hydrodynamic conditions, sediment cores to show trends in sediment bed concentrations over time, and passive samplers attached to a porewater probe frame to assess the mobility of buried contaminants and possible contaminant flux from sediment. These three tools were used together for the first time to assess the mobility of dichlorodiphenyltrichloroethane (DDT) contaminants in sediment in Pallanza Bay, Lake Maggiore, Italy. Depositing sediment and sediment cores were consistent in showing that DDT-contaminated sediment is undergoing burial by cleaner sediment. Elevated DDT concentrations from historical contamination seemed to be effectively buried and immobilized by ongoing deposition by cleaner sediment, because the positive flux from the elevated DDT concentration in the sediment porewater should not advance towards the sediment surface. The monitoring toolset introduced in this study enabled us to more effectively assess ongoing natural attenuation processes and provide more risk relevant data than traditional methods used in monitored natural recovery projects, such as bulk sediment concentrations from sediment cores. Our field assessment results suggest that incoming sediment from the Toce River have reduced DDT concentrations in the sediment compared to historic levels, and will continue to do so in locations where higher DDT concentrations are found within the bioactive layer.

    View details for DOI 10.1016/j.watres.2017.05.024

    View details for PubMedID 28525783

  • Decision-making framework for the application of in-situ activated carbon amendment to sediment. Journal of hazardous materials Choi, Y., Cho, Y., Gala, W. R., Hoelen, T. P., Werner, D., Luthy, R. G. 2016; 306: 184-192

    Abstract

    This study provides a decision-support framework and a design methodology for preliminary evaluation of field application of in-situ activated carbon (AC) amendment to sediment to control the (bio)availability of hydrophobic organic contaminants. The decision-making framework comprises four sequential steps: screening assessment, input parameter determination, model prediction, and evaluation for process optimization. The framework allows the application of state-of-the-art experimental and modeling techniques to assess the effectiveness of the treatment under different field conditions and is designed for application as a part of a feasibility study. Through a stepwise process it is possible to assess the effectiveness of in-situ AC amendment with a proper consideration of different site conditions and application scenarios possible in the field. The methodology incorporates the effect of various parameters on performance including: site-specific kinetic coefficients, varied AC dose and particle size, sediment and AC sorption parameters, and pore-water velocity. The modeling framework allows comparison of design alternatives for treatment optimization and estimation of long-term effectiveness over a period of 10-20 years under slow mass transfer in the field.

    View details for DOI 10.1016/j.jhazmat.2015.12.019

    View details for PubMedID 26736169

  • Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants JOURNAL OF HAZARDOUS MATERIALS Choi, Y., Thompson, J. M., Lin, D., Cho, Y., Ismail, N. S., Hsieh, C., Luthy, R. G. 2016; 304: 352-359

    Abstract

    This study evaluates secondary environmental impacts of various remedial alternatives for sediment contaminated with hydrophobic organic contaminants using life cycle assessment (LCA). Three alternatives including two conventional methods, dredge-and-fill and capping, and an innovative sediment treatment technique, in-situ activated carbon (AC) amendment, are compared for secondary environmental impacts by a case study for a site at Hunters Point Shipyard, San Francisco, CA. The LCA results show that capping generates substantially smaller impacts than dredge-and-fill and in-situ amendment using coal-based virgin AC. The secondary impacts from in-situ AC amendment can be reduced effectively by using recycled or wood-based virgin AC as production of these materials causes much smaller impacts than coal-based virgin AC. The secondary environmental impacts are highly sensitive to the dredged amount and the distance to a disposal site for dredging, the capping thickness and the distance to the cap materials for capping, and the AC dose for in-situ AC amendment. Based on the analysis, this study identifies strategies to minimize secondary impacts caused by different remediation activities: optimize the dredged amount, the capping thickness, or the AC dose by extensive site assessments, obtain source materials from local sites, and use recycled or bio-based AC.

    View details for DOI 10.1016/j.jhazmat.2015.09.069

    View details for Web of Science ID 000367699200039

  • Predicted effectiveness of in-situ activated carbon amendment for field sediment sites with variable site- and compound-specific characteristics JOURNAL OF HAZARDOUS MATERIALS Choi, Y., Cho, Y., Luthy, R. G., Werner, D. 2016; 301: 424-432

    Abstract

    A growing body of evidence shows that the effectiveness of in-situ activated carbon (AC) amendment to treat hydrophobic organic contaminants (HOCs) in sediments can be reliably predicted using a mass transfer modeling approach. This study analyzes available field data for characterizing AC-sediment distribution after mechanical mixing of AC into sediment. Those distributions are used to develop an HOC mass transfer model that accounts for plausible heterogeneities resulting from mixing of AC into sediment. The model is applied to ten field sites in the U.S. and Europe with 2-3 representative HOCs from each site using site- and HOC-specific model parameters collected from the literature. The model predicts that the AC amendment reduces the pore-water HOC concentrations by more than 95% fifteen years after AC deployment for 18 of the 25 total simulated cases when the AC is applied at doses of 1.5 times sediment total organic carbon content with an upper limit of 5 dry wt%. The predicted effectiveness shows negative correlation with the HOC octanol-water partitioning coefficients and the sediment-water distribution coefficients, and positive correlation with the effectiveness calculated based on equilibrium coefficients of sediment and AC, suggesting the possibility for use of the values for screening-level assessments.

    View details for DOI 10.1016/j.jhazmat.2015.09.016

    View details for Web of Science ID 000367407200046

  • Novel Probe for in Situ Measurement of Freely Dissolved Aqueous Concentration Profiles of Hydrophobic Organic Contaminants at the Sediment-Water Interface ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS Lin, D., Eek, E., Oen, A., Cho, Y., Cornelissen, G., Tommerdahl, J., Luthy, R. G. 2015; 2 (11): 320-324
  • In Situ Sequestration of Hydrophobic Organic Contaminants in Sediments under Stagnant Contact with Activated Carbon. 2. Mass Transfer Modeling. Environmental science & technology Choi, Y., Cho, Y., Werner, D., Luthy, R. G. 2014; 48 (3): 1843-1850

    Abstract

    The validity of a hydrophobic organic contaminant mass transfer model to predict the effectiveness of in situ activated carbon (AC) treatment under stagnant sediment-AC contact is studied for different contaminants and sediments. The modeling results and data from a previous 24-month column experiment of uptake in polyethylene samplers are within a factor of 2 for parent- and alkylated-polycyclic aromatic hydrocarbons in petroleum-impacted sediment and factors of 3-10 for polychlorinated biphenyls. The model successfully reproduces the relative effects of AC-sediment contact time, contaminant properties, AC particle size, AC mixing regime, AC distribution, and hydraulic conditions observed in the sediment column experiments. The model tracks contaminant concentrations in different sediment compartments over time, which provides useful information on the contaminant sequestration by the added AC. Long-term projection of the effectiveness of AC amendment using the model shows that the effects of AC particle size and particle-scale heterogeneity in AC distribution are pronounced within a year or so. However, the effect of those factors becomes less significant after a much longer contact period (on the order of a decade or two), resulting in substantial reduction in pore-water concentrations, for example, greater than 99% for benz[a]anthracene, under various scenarios.

    View details for DOI 10.1021/es404209v

    View details for PubMedID 24410479

  • In Situ Sequestration of Hydrophobic Organic Contaminants in Sediments under Stagnant Contact with Activated Carbon. 1. Column Studies. Environmental science & technology Choi, Y., Cho, Y., Luthy, R. G. 2014; 48 (3): 1835-1842

    Abstract

    The effectiveness of activated carbon (AC) treatment to sequester hydrophobic organic contaminants in sediments under stagnant contact was comprehensively studied for the first time. Two years of column experiments were conducted to simulate field conditions with two study sediments contaminated with petroleum and polychlorinated biphenyls, respectively, and variations in AC-sediment contact times, initial AC mixing regimes and distribution, AC particle sizes, and pore-water flow. The benefit of AC treatment was gradually enhanced with time toward the end point of the treatment, where sorption equilibrium is established between sediment and AC. After two years of stagnant contact, the contaminant uptake in polyethylene passive samplers embedded in the columns was reduced by 95-99% for polycyclic aromatic hydrocarbons and 93-97% for polychlorinated biphenyls with 5 and 4 wt % AC dose, respectively, when AC was initially applied by mechanical mixing. These results verify that AC treatment can effectively control the availability of hydrophobic organic contaminants under stagnant conditions within a reasonable time frame following an initial distribution of AC into the sediment. The effectiveness of AC treatment was strongly dependent on AC particle size and AC distribution, while the effect of AC initial mixing regimes and pore-water flow was not pronounced.

    View details for DOI 10.1021/es403335g

    View details for PubMedID 24083415

  • Bioturbation Delays Attenuation of DDT by Clean Sediment Cap but Promotes Sequestration by Thin-Layered Activated Carbon ENVIRONMENTAL SCIENCE & TECHNOLOGY Lin, D., Cho, Y., Werner, D., Luthy, R. G. 2014; 48 (2): 1175-1183

    Abstract

    The effects of bioturbation on the performance of attenuation by sediment deposition and activated carbon to reduce risks from DDT-contaminated sediment were assessed for DDT sediment-water flux, biouptake, and passive sampler (PE) uptake in microcosm experiments with a freshwater worm, Lumbriculus variegatus. A thin-layer of clean sediment (0.5 cm) did not reduce the DDT flux when bioturbation was present, while a thin (0.3 cm) AC cap was still capable of reducing the DDT flux by 94%. Bioturbation promoted AC sequestration by reducing the 28-day DDT biouptake (66%) and DDT uptake into PE (>99%) compared to controls. Bioturbation further promoted AC-sediment contact by mixing AC particles into underlying sediment layers, reducing PE uptake (55%) in sediment compared to the AC cap without bioturbation. To account for the observed effects from bioturbation, a mass transfer model together with a biodynamic model were developed to simulate DDT flux and biouptake, respectively, and models confirmed experimental results. Both experimental measurements and modeling predictions imply that thin-layer activated carbon placement on sediment is effective in reducing the risks from contaminated sediments in the presence of bioturbation, while natural attenuation process by clean sediment deposition may be delayed by bioturbation.

    View details for DOI 10.1021/es404108h

    View details for Web of Science ID 000330205000042

    View details for PubMedID 24359108

  • Polyethylene-Water Partitioning Coefficients for Parent- and Alkylated-Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls ENVIRONMENTAL SCIENCE & TECHNOLOGY Choi, Y., Cho, Y., Luthy, R. G. 2013; 47 (13): 6943-6950

    Abstract

    We report polyethylene (PE)-water partitioning coefficients (K(PE)) for 17 parent-polycyclic aromatic hydrocarbons (PAHs), 22 alkylated-PAHs, 3 perdeuterated parent-PAHs, and 100 polychlorinated biphenyl (PCB) congeners or coeluting congener groups. The K(PE) values for compounds in the same homologue group are within 0.2 log units for alkylated-PAHs but span up to an order of magnitude for PCBs, due to the greater contribution of the position of the substituents (i.e., chlorines for PCBs and alkyl groups for alkylated-PAHs) to the molecular structure. The K(PE) values in deionized water for parent- and alkylated-PAHs show a good correlation with a regression model employing the number of aromatic carbons (C(AR)) and aliphatic carbons (C(AL)) in each compound: log K(PE) = -0.241 + 0.313 C(AR) + 0.461 C(AL). The regression model is useful for the assessment of freely dissolved aqueous concentrations of alkylated-PAHs, which comprise a significant fraction of the total in petroleum-derived PAHs and in some pyrogenic PAH mixtures. For PCBs, experimentally determined octanol-water partitioning coefficients are the best predictor of the K(PE) values among the molecular parameters studied. The effect of salinity up to 20 or 30 parts per thousand is found to be relatively insignificant on K(PE) values for PAHs or PCBs, respectively.

    View details for DOI 10.1021/es304566v

    View details for Web of Science ID 000321521400029

    View details for PubMedID 23488618

  • Measurement and Modeling of Activated Carbon Performance for the Sequestration of Parent- and Alkylated-Polycyclic Aromatic Hydrocarbons in Petroleum-Impacted Sediments ENVIRONMENTAL SCIENCE & TECHNOLOGY Choi, Y., Cho, Y., Gala, W. R., Luthy, R. G. 2013; 47 (2): 1024-1032

    Abstract

    We present a first comprehensive set of experiments that demonstrate the performance of activated carbon (AC) to reduce the availability of polycyclic aromatic hydrocarbons (PAHs) including alkylated-PAHs in petroleum-impacted sediments. The uptake in polyethylene samplers for total PAHs in a well-mixed sediment slurry was reduced up to 99% and 98% for petroleum-impacted sediments with oil contents of 1% and 2%, respectively, by treatment with 5% AC. The AC showed similar efficiency for parent-PAHs and a suite of alkylated-PAHs, which predominate over parent-PAHs in petroleum-impacted sediments. A mass transfer model was used to simulate the AC performance in a slurry phase with site-specific mass transfer parameters determined in this study. Comparison between the experimental data and simulation results suggested that dissolved organic matter and/or oil phase may have attenuated the AC performance by a factor of 5-6 for 75-300 μm AC with 5% dose at one month. The attenuation in AC performance became negligible with increase in AC-sediment slurry contact time to 12 months and with decrease in AC particle size. The results show the potential for AC amendment to sequester PAHs in petroleum-impacted sediments and the effect of contact time and AC particle size on the efficiency of the treatment.

    View details for DOI 10.1021/es303770c

    View details for Web of Science ID 000313667400045

    View details for PubMedID 23240641

  • Long-term monitoring and modeling of the mass transfer of polychlorinated biphenyls in sediment following pilot-scale in-situ amendment with activated carbon. Journal of contaminant hydrology Cho, Y., Werner, D., Choi, Y., Luthy, R. G. 2012; 129-130: 25-37

    Abstract

    The results of five years of post-treatment monitoring following in-situ activated carbon (AC) placement for stabilization of polychlorinated biphenyls (PCBs) at an inter-tidal mudflat adjacent to Hunters Point Shipyard, San Francisco Bay, CA, USA are reported in this paper. After five years, AC levels of the sediment cores were comparable to those at earlier sampling times. Passive sampler uptake validated the benefit of the AC amendment with a strong local sorbent dose-response relationship. The PCB uptakes in passive samplers decreased up to 73% with a 3.7 dry wt.% AC dose after five years, confirming the temporal enhancement of the amendment benefit from a 19% reduction with a 4.4% dose observed within one month. The long-term effectiveness of AC, the local AC dose response, the impact of fouling by NOM, the spatial heterogeneity of AC incorporation, and the effects of advective sediment pore-water movement are discussed with the aid of a PCB mass transfer model. Modeling and experimental results indicated that the homogeneous incorporation of AC in the sediment will significantly accelerate the benefit of the treatment.

    View details for DOI 10.1016/j.jconhyd.2011.09.009

    View details for PubMedID 22055155

  • Long-term monitoring and modeling of the mass transfer of polychlorinated biphenyls in sediment following pilot-scale in-situ amendment with activated carbon JOURNAL OF CONTAMINANT HYDROLOGY Cho, Y., Werner, D., Choi, Y., Luthy, R. G. 2012; 129: 25-37

    Abstract

    The results of five years of post-treatment monitoring following in-situ activated carbon (AC) placement for stabilization of polychlorinated biphenyls (PCBs) at an inter-tidal mudflat adjacent to Hunters Point Shipyard, San Francisco Bay, CA, USA are reported in this paper. After five years, AC levels of the sediment cores were comparable to those at earlier sampling times. Passive sampler uptake validated the benefit of the AC amendment with a strong local sorbent dose-response relationship. The PCB uptakes in passive samplers decreased up to 73% with a 3.7 dry wt.% AC dose after five years, confirming the temporal enhancement of the amendment benefit from a 19% reduction with a 4.4% dose observed within one month. The long-term effectiveness of AC, the local AC dose response, the impact of fouling by NOM, the spatial heterogeneity of AC incorporation, and the effects of advective sediment pore-water movement are discussed with the aid of a PCB mass transfer model. Modeling and experimental results indicated that the homogeneous incorporation of AC in the sediment will significantly accelerate the benefit of the treatment.

    View details for DOI 10.1016/j.jconhyd.2011.09.009

    View details for Web of Science ID 000302437800005

  • Assessment of Advective Porewater Movement Affecting Mass Transfer of Hydrophobic Organic Contaminants in Marine Intertidal Sediment ENVIRONMENTAL SCIENCE & TECHNOLOGY Cho, Y., Werner, D., Moffett, K. B., Luthy, R. G. 2010; 44 (15): 5842-5848

    Abstract

    Advective porewater movement and molecular diffusion are important factors affecting the mass transfer of hydrophobic organic compounds (HOCs) in marsh and mudflat sediments. This study assessed porewater movement in an intertidal mudflat in South Basin adjacent to Hunters Point Shipyard, San Francisco, CA, where a pilot-scale test of sorbent amendment assessed the in situ stabilization of polychlorinated biphenyls (PCBs). To quantify advective porewater movement within the top 0-60 cm sediment layer, we used temperature as a tracer and conducted heat transport analysis using 14-day data from multidepth sediment temperature logging stations and one-dimensional heat transport simulations. The best-fit conditions gave an average Darcy velocity of 3.8cm/d in the downward vertical direction for sorbent-amended sediment with a plausible range of 0 cm/d to 8 cm/d. In a limiting case with no net advection, the best-fit depth-averaged mechanical dispersion coefficient was 2.2x10(-7) m2/s with a range of 0.9x10(-7) m2/s to 5.6x10(-7) m2/s. The Peclet number for PCB mobilization showed that molecular diffusion would control PCB mass transfer from sediment to sorbent particles for the case of uniform distribution of sorbent. However, the advective flow and mechanical dispersion in the test site would significantly benefit the stabilization effect of heterogeneously distributed sorbent by acting to smooth out the heterogeneities and homogenizing pollutant concentrations across the entire bioactive zone. These measurements and modeling techniques on intertidal sediment porewater transport could be useful for the development of more reliable mass transfer models for the prediction of contaminant release within the sediment bed, the movement of HOCs in the intertidal aquatic environment, and in situ sequestration by sorbent addition.

    View details for DOI 10.1021/es903583y

    View details for Web of Science ID 000280367200031

    View details for PubMedID 20608739

  • Field Application of Activated Carbon Amendment for In-Situ Stabilization of Polychlorinated Biphenyls in Marine Sediment ENVIRONMENTAL SCIENCE & TECHNOLOGY Cho, Y., Ghosh, U., Kennedy, A. J., Grossman, A., Ray, G., Tomaszewski, J. E., Smithenry, D. W., Bridges, T. S., Luthy, R. G. 2009; 43 (10): 3815-3823

    Abstract

    We report results on the first field-scale application of activated carbon (AC) amendment to contaminated sediment for in-situ stabilization of polychlorinated biphenyls (PCBs). The test was performed on a tidal mud flat at South Basin, adjacent to the former Hunters Point Naval Shipyard, San Francisco Bay, CA. The major goals of the field study were to (1) assess scale up of the AC mixing technology using two available, large-scale devices, (2) validate the effectiveness of the AC amendment at the field scale, and (3) identify possible adverse effects of the remediation technology. Also, the test allowed comparison among monitoring tools, evaluation of longer-term effectiveness of AC amendment, and identification of field-related factors that confound the performance of in-situ biological assessments. Following background pretreatment measurements, we successfully incorporated AC into sediment to a nominal 30 cm depth during a single mixing event, as confirmed by total organic carbon and black carbon contents in the designated test plots. The measured AC dose averaged 2.0-3.2 wt% and varied depending on sampling locations and mixing equipment. AC amendment did not impact sediment resuspension or PCB release into the water column over the treatment plots, nor adversely impactthe existing macro benthic community composition, richness, or diversity. The PCB bioaccumulation in marine clams was reduced when exposed to sediment treated with 2% AC in comparison to the control plot Field-deployed semi permeable membrane devices and polyethylene devices showed about 50% reduction in PCB uptake in AC-treated sediment and similar reduction in estimated pore-water PCB concentration. This reduction was evident even after 13-month post-treatment with then 7 months of continuous exposure, indicating AC treatment efficacy was retained for an extended period. Aqueous equilibrium PCB concentrations and PCB desorption showed an AC-dose response. Field-exposed AC after 18 months retained a strong stabilization capability to reduce aqueous equilibrium PCB concentrations by about 90%, which also supports the long-term effectiveness of AC in the field. Additional mixing during or after AC deployment, increasing AC dose, reducing AC-particle size, and sequential deployment of AC dose will likely improve AC-sediment contact and overall effectiveness. The reductions in PCB availability observed with slow mass transfer under field conditions calls for predictive models to assess the long-term trends in pore-water PCB concentrations and the benefits of alternative in-situ AC application and mixing strategies.

    View details for DOI 10.1021/es802931c

    View details for Web of Science ID 000266046700066

    View details for PubMedID 19544893

  • Field methods for amending marine sediment with activated carbon and assessing treatment effectiveness MARINE ENVIRONMENTAL RESEARCH Cho, Y., Smithenry, D. W., Ghosh, U., Kennedy, A. J., Millward, R. N., Bridges, T. S., Luthy, R. G. 2007; 64 (5): 541-555

    Abstract

    Previous laboratory studies have shown reductions in PCB bioavailability for sediments amended with activated carbon (AC). Here we report results on a preliminary pilot-scale study to assess challenges in scaling-up for field deployment and monitoring. The goals of the preliminary pilot-scale study at Hunters Point Shipyard (San Francisco, USA) were to (1) test the capabilities of a large-scale mixing device for incorporating AC into sediment, (2) develop and evaluate our field assessment techniques, and (3) compare reductions in PCB bioavailability found in the laboratory with well-mixed systems to those observed in the field with one-time-mixed systems. In this study we successfully used a large-scale device to mix 500kg of AC into a 34.4m(2) plot to a depth of 1ft, a depth that includes the majority of the biologically active zone. Our results indicate that after 7 months of AC-sediment contact in the field, the 28-day PCB bioaccumulation for the bent-nosed clam, Macoma nasuta, field-deployed to this AC-amended sediment was approximately half of the bioaccumulation resulting from exposure to untreated sediment. Similar PCB bioaccumulation reductions were found in laboratory bioassays conducted on both the bivalve, M. nasuta and the estuarine amphipod, Leptocheirus plumulosus, using sediment collected from the treated and untreated field plots one year after the AC amendment occurred. To further understand the long-term effectiveness of AC as an in situ treatment strategy for PCB-contaminated sediments under field conditions, a 3-year comprehensive study is currently underway at Hunters Point that will compare the effectiveness of two large-scale mixing devices and include both unmixed and mixed-only control plots.

    View details for DOI 10.1016/j.marenvres.2007.04.006

    View details for Web of Science ID 000251201400001

    View details for PubMedID 17570482

  • Treatment and containment of contaminated sediments NATO Advanced Research Workshop on Assessment and Remediation of Contaminated Sediments Tomaszewski, J. E., Smithenry, D. W., Cho, Y., Luthy, R. G., Lowry, G. V., Reible, D., Macek, T., Sura, M., Chrastilova, Z., Demnerova, K., Mackova, M., Pavlikova, D., Szekeres, M., Sylvestre, M. SPRINGER. 2006: 137–178