Stanford Advisors

All Publications

  • One-Step Formation of Pharmaceuticals Having a Phenylacetic Acid Core Using Water Microdroplets. Journal of the American Chemical Society Meng, Y., Gnanamani, E., Zare, R. N. 2023


    The properties of water microdroplets strikingly differ from bulk water. Using room-temperature water microdroplets, we find that toluene can react with CO2 to form phenylacetic acid in one step without any catalyst with negative high voltage applied at the sprayer source. The chemical components of these microdroplets are identified by mass spectrometry, and product structures are confirmed by tandem mass spectrometry. In this manner, we generate three drug molecules in a single step: 4-aminophenylacetic acid (epithelial peptide transporter PepT1 inhibitor), 3,4-dihydroxyphenylacetic acid (dopamine metabolite neurotransmitter), and phenylacetic acid (sodium salt form; treatment of urea cycle disorder). Mechanistic studies show that benzyl radicals formed from hydroxyl radicals at the water microdroplet interface drive these carboxylation reactions. This water microdroplet chemistry is general, allowing activation and subsequent carboxylation of aryl α-C-H groups.

    View details for DOI 10.1021/jacs.3c00773

    View details for PubMedID 37011129

  • Catalyst-Free Decarboxylative Amination of Carboxylic Acids in Water Microdroplets. Journal of the American Chemical Society Meng, Y., Gnanamani, E., Zare, R. N. 2022


    Previous studies have shown that hydroxyl radicals can be formed at the water-gas surface of water microdroplets. We report the use of in situ generated hydroxyl radicals to carry out an organic transformation in one step, namely, the formation of anilines from aryl acids as well as both ammonia and primary/secondary amines via decarboxylation. Benzoic acids and amines are dissolved in water, and the solution is sprayed to form microdroplets whose chemical contents are analyzed mass spectrometrically. All intermediates and products are determined using mass spectrometry (MS) as well as in some cases tandem mass spectrometry (MS2). These results support the following reaction mechanism: NR2OH, formed via reaction of the amine with •OH, reacts with benzoic acid to form an isocyanate via a Lossen rearrangement. Hydrolysis followed by liberation of CO2 then delivers the aniline product. Notably, the scope of this transformation includes a variety of amines and aromatic acids and enables their conversion into aniline and N-substituted anilines, all in a single step. Additionally, this reaction occurs at room temperature and does not require metal catalysts or organic solvents.

    View details for DOI 10.1021/jacs.2c12236

    View details for PubMedID 36566437

  • Direct C(sp3)-N Bond Formation between Toluene and Amine in Water Microdroplets. Journal of the American Chemical Society Meng, Y., Gnanamani, E., Zare, R. N. 2022


    Unlike the inertness of bulk water, water microdroplets exhibit some remarkable reactivities. We report that water microdroplets can directly produce stable C7H7+ cations (a combination of benzylic and tropylium cations) from toluene and other substrates at room temperature with a positive voltage (+4 kV) applied to the droplet spray source. The C7H7+ cation and the benzyl radical (C6H5CH2·) are both generated via hydroxyl radicals at the water-gas interface of the microdroplets. The C7H7+ signal is observed directly by mass spectrometry. Dissolved amines (primary, secondary, and tertiary) in the microdroplets can react with both C7H7+ and C6H5CH2· to form the corresponding alkyl C(sp3)-N coupling products in one step, which cannot be achieved in bulk water or other solvents. The products were identified using tandem mass spectrometry (MS2) and 1H NMR spectroscopy. Notably, the direct C(sp3)-N bond formation products were obtained in the absence of a catalyst. In the presence of a radical scavenger, the mass spectra of the C(sp3)-N coupling products are strongly suppressed, which supports the hypothesis that this reaction is driven by hydroxyl radicals generated in the water microdroplets. Taken together, these results show that water microdroplets provide a new method for direct one-step C(sp3)-N bond formation without the need for a metal catalyst.

    View details for DOI 10.1021/jacs.2c10032

    View details for PubMedID 36255242

  • Spraying Water Microdroplets Containing 1,2,3-Triazole Converts Carbon Dioxide into Formic Acid. Journal of the American Chemical Society Song, X., Meng, Y., Zare, R. N. 2022


    We report the use of 1,2,3-triazole (Tz)-containing water microdroplets for gas-phase carbon dioxide (CO2) reduction at room temperature. Using a coaxial sonic spraying setup, the CO2 can be efficiently captured by Tz and converted to formic acid (HCOOH; FA) at the gas-liquid interface (GLI). A mass spectrometer operated in negative ion mode monitors the capture of CO2 to form the bicarbonate anion (HCO3-) and conversion to form the formate anion (HCOO-). Varied FA species were successfully identified by MS/MS experiments including the formate monomer ([FA - H]-, m/z 45), the dimer ([2FA - H]-, m/z 91; [2FA + Na - 2H]-, m/z 113), the trimer ([3FA - H]-, m/z 137), and some other adducts (such as [FA - H + H2CO3]-, m/z 107; [2FA + Na - 2H + Tz]-, m/z 182). The reaction conditions were systematically optimized to make the maximum conversion yield reach over 80% with an FA concentration of approximately 71 ± 3.1 μM. The mechanism for the reaction is speculated to be that Tz donates the proton and the hydroxide (OH-) at the GLI, resulting in a stepwise yield of electrons to reduce gas-phase CO2 to FA.

    View details for DOI 10.1021/jacs.2c07779

    View details for PubMedID 36075012

  • Laser Ablation Electrospray Ionization Achieves 5 mum Resolution Using a Microlensed Fiber. Analytical chemistry Meng, Y., Song, X., Zare, R. N. 2022


    A pulsed (10 Hz) infrared (IR) (1064 nm) laser is focused on a sample surface by means of a microlensed fiber. Analytes desorbed from the surface are captured by charged microdroplets before entering a mass spectrometer. By translating the sample surface, a chemical map is generated with a resolution of 5 mum, defined as the change from 20 to 80% of the analyte signal intensity. As a demonstration of the power of this new imaging technique, analytes from a parsnip root section are imaged and compared with that obtained from conventional laser ablation electrospray ionization mass spectrometry. The improvement in spatial resolution is about a factor of 20.

    View details for DOI 10.1021/acs.analchem.2c01942

    View details for PubMedID 35797218

  • Capture of Hydroxyl Radicals by Hydronium Cations in Water Microdroplets. Angewandte Chemie (International ed. in English) Xing, D., Meng, Y., Yuan, X., Jin, S., Song, X., Zare, R. N., Zhang, X. 2022


    Despite the high stability of bulk water, water microdroplets possess strikingly different properties, such as the presence of hydroxyl radicals (OH) at the air-water interface. Previous studies exhibited the recombination of OH into H 2 O 2 molecules and the capture of OH by oxidizing other molecules. By spraying pure water microdroplets into a mass spectrometer, we detected OH in the form of (H 4 O 2 ) + that is essentially OH--H 3 O + , a hydroxyl radical combined with a hydronium cation through hydrogen bonding. We also successfully captured it with two OH scavengers, caffeine and melatonin, and key oxidation radical intermediates that bear important mechanistic information were seen. It is suggested that some previous reactions involving (H 4 O 2 ) + should be attributed to reactions with OH--H 3 O + rather than with the water dimer cation (H 2 O-OH 2 ) + .

    View details for DOI 10.1002/anie.202207587

    View details for PubMedID 35700155