Bio


Yinyu Ye is currently the Kwoh-Ting Li Professor in the School of Engineering at the Department of Management Science and Engineering and Institute of Computational and Mathematical Engineering and the Director of the MS&E Industrial Affiliates Program, Stanford University. He received the B.S. degree in System Engineering from the Huazhong University of Science and Technology, China, and the M.S. and Ph.D. degrees in Engineering-Economic Systems and Operations Research from Stanford University. Ye's research interests lie in the areas of optimization, complexity theory, algorithm design and analysis, and applications of mathematical programming, operations research and system engineering. He is also interested in developing optimization software for various real-world applications. Current research topics include Liner Programming Algorithms, Markov Decision Processes, Computational Game/Market Equilibrium, Metric Distance Geometry, Dynamic Resource Allocation, and Stochastic and Robust Decision Making, etc. He is an INFORMS (The Institute for Operations Research and The Management Science) Fellow, and has received several research awards including the inaugural 2012 ISMP Tseng Lectureship Prize for outstanding contribution to continuous optimization, the 2009 John von Neumann Theory Prize for fundamental sustained contributions to theory in Operations Research and the Management Sciences, the inaugural 2006 Farkas prize on Optimization, and the 2009 IBM Faculty Award. He has supervised numerous doctoral students at Stanford who received the 2008 NicholsonPrize and the 2006 and 2010 INFORMS Optimization Prizes for Young Researchers. Ye teaches courses on Optimization, Network and Integer Programming, Semidefinite Programming, etc. He has written extensively on Interior-Point Methods, Approximation Algorithms, Conic Optimization, and their applications; and served as a consultant or technical board member to a variety of industries, including MOSEK.

Academic Appointments


Honors & Awards


  • Co-organizer, DIMACS Princeton workshop on discrete optimizatio (1999)
  • Section Officer (Linear Programming), Institute for Operations Research and the Management Sciences (1997-2000)
  • Associate Editor, Mathematics of Operations Research (1998-2001)
  • Area Editor, Optimization & Engineering (2000)
  • Semi-Plenary speaker, 17th International Symposium on Mathematical Programming, Atlanta (2000)
  • Plenary speaker, Workshop on Internet and Network Economics (2008)
  • Plenary speaker, International Symposium on Mathematical Programming, Berlin (2012)
  • Fellow, INFORMS (November 6, 2006)
  • Inaugural recipient of the Farkas Prize, INFORMS Optimization Society (2006)
  • Faculty of the Year Award, Stanford Asian American Society (2007)
  • John von Neumann Theory Prize (Co-Recipient), INFORMS (2009)
  • Lectureship Prize (Inaugural Recipient), ISMP Tseng (2012)

Professional Education


  • BS, Huazhong University of Science and Technology (HUST), China, Systems and Control (1982)
  • MS, Stanford University, Engineering Economic Systems (1983)
  • PhD, Stanford University, Engineering Economic Systems and Operations Research (1988)

2013-14 Courses


Journal Articles


  • On stress matrices of (d+1)-lateration frameworks in general position MATHEMATICAL PROGRAMMING Alfakih, A. Y., Taheri, N., Ye, Y. 2013; 137 (1-2): 1-17
  • On affine motions and bar frameworks in general position LINEAR ALGEBRA AND ITS APPLICATIONS Alfakih, A. Y., Ye, Y. 2013; 438 (1): 31-36
  • THE CUBIC SPHERICAL OPTIMIZATION PROBLEMS MATHEMATICS OF COMPUTATION Zhang, X., Qi, L., Ye, Y. 2012; 81 (279): 1513-1525
  • A FPTAS for computing a symmetric Leontief competitive economy equilibrium MATHEMATICAL PROGRAMMING Zhu, Z., Dang, C., Ye, Y. 2012; 131 (1-2): 113-129
  • A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks JOURNAL OF THEORETICAL BIOLOGY Fleming, R. M., MAES, C. M., Saunders, M. A., Ye, Y., Palsson, B. O. 2012; 292: 71-77

    Abstract

    We derive a convex optimization problem on a steady-state nonequilibrium network of biochemical reactions, with the property that energy conservation and the second law of thermodynamics both hold at the problem solution. This suggests a new variational principle for biochemical networks that can be implemented in a computationally tractable manner. We derive the Lagrange dual of the optimization problem and use strong duality to demonstrate that a biochemical analogue of Tellegen's theorem holds at optimality. Each optimal flux is dependent on a free parameter that we relate to an elementary kinetic parameter when mass action kinetics is assumed.

    View details for DOI 10.1016/j.jtbi.2011.09.029

    View details for Web of Science ID 000297450100008

    View details for PubMedID 21983269

  • Price of Correlations in Stochastic Optimization OPERATIONS RESEARCH Agrawal, S., Ding, Y., Saberi, A., Ye, Y. 2012; 60 (1): 150-162
  • Geometric rounding: a dependent randomized rounding scheme JOURNAL OF COMBINATORIAL OPTIMIZATION Ge, D., He, S., Ye, Y., Zhang, J. 2011; 22 (4): 699-725
  • The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate MATHEMATICS OF OPERATIONS RESEARCH Ye, Y. 2011; 36 (4): 593-603
  • An interior-point path-following algorithm for computing a Leontief economy equilibrium COMPUTATIONAL OPTIMIZATION AND APPLICATIONS Dang, C., Ye, Y., Zhu, Z. 2011; 50 (2): 223-236
  • A note on the complexity of L-p minimization MATHEMATICAL PROGRAMMING Ge, D., Jiang, X., Ye, Y. 2011; 129 (2): 285-299
  • Identification of 67 Histone Marks and Histone Lysine Crotonylation as a New Type of Histone Modification CELL Tan, M., Luo, H., Lee, S., Jin, F., Yang, J. S., Montellier, E., Buchou, T., Cheng, Z., Rousseaux, S., Rajagopal, N., Lu, Z., Ye, Z., Zhu, Q., Wysocka, J., Ye, Y., Khochbin, S., Ren, B., Zhao, Y. 2011; 146 (6): 1015-1027
  • An Optimization Approach to Improving Collections of Shape Maps COMPUTER GRAPHICS FORUM Andy Nguyen, A., Ben-Chen, M., Welnicka, K., Ye, Y., Guibas, L. 2011; 30 (5): 1481-1491
  • Proliferative capacity of stem/progenitor-like cells in the kidney may associate with the outcome of patients with acute tubular necrosis HUMAN PATHOLOGY Ye, Y., Wang, B., Jiang, X., Hu, W., Feng, J., Li, H., Jin, M., Ying, Y., Wang, W., Mao, X., Jin, K. 2011; 42 (8): 1132-1141

    Abstract

    Animal studies indicate that adult renal stem/progenitor cells can undergo rapid proliferation in response to renal injury, but whether the same is true in humans is largely unknown. To examine the profile of renal stem/progenitor cells responsible for acute tubular necrosis in human kidney, double and triple immunostaining was performed using proliferative marker and stem/progenitor protein markers on sections from 10 kidneys with acute tubular necrosis and 4 normal adult kidneys. The immunopositive cells were recorded using 2-photon confocal laser scanning microscopy. We found that dividing cells were present in the tubules of the cortex and medulla, as well as the glomerulus in normal human kidney. Proliferative cells in the parietal layer of Bowman capsule expressed CD133, and dividing cells in the tubules expressed immature cell protein markers paired box gene 2, vimentin, and nestin. After acute tubular necrosis, Ki67-positive cells in the cortex tubules significantly increased compared with normal adult kidney. These Ki67-positive cells expressed CD133 and paired box gene 2, but not the cell death marker, activated caspase-3. In addition, the number of dividing cells increased significantly in patients with acute tubular necrosis who subsequently recovered, compared with patients with acute tubular necrosis who consequently developed protracted acute tubular necrosis or died. Our data suggest that renal stem/progenitor cells may reside not only in the parietal layer of Bowman capsule but also in the cortex and medulla in normal human kidney, and the proliferative capacity of renal stem/progenitor cells after acute tubular necrosis may be an important determinant of a patient's outcome.

    View details for DOI 10.1016/j.humpath.2010.11.005

    View details for Web of Science ID 000293159300008

    View details for PubMedID 21315412

  • A Unified Framework for Dynamic Prediction Market Design OPERATIONS RESEARCH Agrawal, S., Delage, E., Peters, M., Wang, Z., Ye, Y. 2011; 59 (3): 550-568
  • Statistical ranking and combinatorial Hodge theory MATHEMATICAL PROGRAMMING Jiang, X., Lim, L., Yao, Y., Ye, Y. 2011; 127 (1): 203-244
  • Cooperation Between the Septins and the Actomyosin Ring and Role of a Cell-Integrity Pathway During Cell Division in Fission Yeast GENETICS Wu, J., Ye, Y., Wang, N., Pollard, T. D., Pringle, J. R. 2010; 186 (3): 897-U232

    Abstract

    A major question about cytokinesis concerns the role of the septin proteins, which localize to the division site in all animal and fungal cells but are essential for cytokinesis only in some cell types. For example, in Schizosaccharomyces pombe, four septins localize to the division site, but deletion of the four genes produces only a modest delay in cell separation. To ask if the S. pombe septins function redundantly in cytokinesis, we conducted a synthetic-lethal screen in a septin-deficient strain and identified seven mutations. One mutation affects Cdc4, a myosin light chain that is an essential component of the cytokinetic actomyosin ring. Five others cause frequent cell lysis during cell separation and map to two loci. These mutations and their dosage suppressors define a signaling pathway (including Rho1 and a novel arrestin) for repairing cell-wall damage. The seventh mutation affects the poorly understood RNA-binding protein Scw1 and severely delays cell separation when combined either with a septin mutation or with a mutation affecting the septin-interacting, anillin-like protein Mid2, suggesting that Scw1 functions in a pathway parallel to that of the septins. Taken together, our results suggest that the S. pombe septins participate redundantly in one or more pathways that cooperate with the actomyosin ring during cytokinesis and that a septin defect causes septum defects that can be repaired effectively only when the cell-integrity pathway is intact.

    View details for DOI 10.1534/genetics.110.119842

    View details for Web of Science ID 000283996100011

    View details for PubMedID 20739711

  • ON EQUILIBRIUM PRICING AS CONVEX OPTIMIZATION JOURNAL OF COMPUTATIONAL MATHEMATICS Chen, L., Ye, Y., Zhang, J. 2010; 28 (5): 569-578
  • Semidefinite Relaxation of Quadratic Optimization Problems IEEE SIGNAL PROCESSING MAGAZINE Luo, Z., Ma, W., So, A. M., Ye, Y., Zhang, S. 2010; 27 (3): 20-34
  • Special Issue in Memory of Alexander Rubinov PACIFIC JOURNAL OF OPTIMIZATION Fukushima, M., Kelley, C. T., Qi, L., Sun, J., Ye, Y. 2010; 6 (2)
  • Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems OPERATIONS RESEARCH Delage, E., Ye, Y. 2010; 58 (3): 595-612
  • Dynamic Spectrum Management With the Competitive Market Model IEEE TRANSACTIONS ON SIGNAL PROCESSING Xie, Y., Armbruster, B., Ye, Y. 2010; 58 (4): 2442-2446
  • A novel fluence map optimization model incorporating leaf sequencing constraints PHYSICS IN MEDICINE AND BIOLOGY Jin, R., Min, Z., Song, E., Liu, H., Ye, Y. 2010; 55 (4): 1243-1264

    Abstract

    A novel fluence map optimization model incorporating leaf sequencing constraints is proposed to overcome the drawbacks of the current objective inside smoothing models. Instead of adding a smoothing item to the objective function, we add the total number of monitor unit (TNMU) requirement directly to the constraints which serves as an important factor to balance the fluence map optimization and leaf sequencing optimization process at the same time. Consequently, we formulate the fluence map optimization models for the trailing (left) leaf synchronized, leading (right) leaf synchronized and the interleaf motion constrained non-synchronized leaf sweeping schemes, respectively. In those schemes, the leaves are all swept unidirectionally from left to right. Each of those models is turned into a linear constrained quadratic programming model which can be solved effectively by the interior point method. Those new models are evaluated with two publicly available clinical treatment datasets including a head-neck case and a prostate case. As shown by the empirical results, our models perform much better in comparison with two recently emerged smoothing models (the total variance smoothing model and the quadratic smoothing model). For all three leaf sweeping schemes, our objective dose deviation functions increase much slower than those in the above two smoothing models with respect to the decreasing of the TNMU. While keeping plans in the similar conformity level, our new models gain much better performance on reducing TNMU.

    View details for DOI 10.1088/0031-9155/55/4/023

    View details for Web of Science ID 000274206800023

    View details for PubMedID 20124655

  • UNIVERSAL RIGIDITY AND EDGE SPARSIFICATION FOR SENSOR NETWORK LOCALIZATION SIAM JOURNAL ON OPTIMIZATION Zhu, Z., So, A. M., Ye, Y. 2010; 20 (6): 3059-3081

    View details for DOI 10.1137/090772009

    View details for Web of Science ID 000285547100015

  • Universal Rigidity: Towards Accurate and Efficient Localization of Wireless Networks 2010 PROCEEDINGS IEEE INFOCOM Zhu, Z., So, A. M., Ye, Y. 2010
  • Correlation Robust Stochastic Optimization PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS Agrawal, S., Ding, Y., Saberi, A., Ye, Y. 2010; 135: 1087-1096
  • Finding Equitable Convex Partitions of Points in a Polygon Efficiently ACM TRANSACTIONS ON ALGORITHMS Carlsson, J. G., Armbruster, B., Ye, Y. 2010; 6 (4)
  • Stochastic Combinatorial Optimization with Controllable Risk Aversion Level MATHEMATICS OF OPERATIONS RESEARCH So, A. M., Zhang, J., Ye, Y. 2009; 34 (3): 522-537
  • Conceptual formulation on four-dimensional inverse planning for intensity modulated radiation therapy PHYSICS IN MEDICINE AND BIOLOGY Lee, L., Ma, Y., Ye, Y., Xing, L. 2009; 54 (13): N255-N266

    Abstract

    Four-dimensional computed tomography (4DCT) offers an extra dimension of 'time' on the three-dimensional patient model with which we can incorporate target motion in radiation treatment (RT) planning and delivery in various ways such as in the concept of internal target volume, in gated treatment or in target tracking. However, for all these methodologies, different phases are essentially considered as non-interconnected independent phases for the purpose of optimization, in other words, the 'time' dimension has yet to be incorporated explicitly in the optimization algorithm and fully exploited. In this note, we have formulated a new 4D inverse planning technique that treats all the phases in the 4DCT as one single entity in the optimization. The optimization is formulated as a quadratic problem for disciplined convex programming that enables the problem to be analyzed and solved efficiently. In the proof-of-principle examples illustrated, we show that the temporal information of the spatial relation of the target and organs at risk could be 'exchanged' amongst different phases so that an appropriate weighting of dose deposition could be allocated to each phase, thus enabling a treatment with a tight target margin and a full duty cycle otherwise not achievable by either of the aforementioned methodologies. Yet there are practical issues to be solved in the 4D RT planning and delivery. The 4D concept in the optimization we have formulated here does provide insight on how the 'time' dimension can be exploited in the 4D optimization process.

    View details for DOI 10.1088/0031-9155/54/13/N01

    View details for Web of Science ID 000267137200025

    View details for PubMedID 19521008

  • An edge-reduction algorithm for the vertex cover problem OPERATIONS RESEARCH LETTERS Han, Q., Punnen, A. P., Ye, Y. 2009; 37 (3): 181-186
  • Kit ligand promotes first polar body extrusion of mouse preovulatory oocytes REPRODUCTIVE BIOLOGY AND ENDOCRINOLOGY Ye, Y., Kawamura, K., Sasaki, M., Kawamura, N., Groenen, P., Gelpke, M. D., Rauch, R., Hsueh, A. J., Tanaka, T. 2009; 7

    Abstract

    Shortly after stimulation by the preovulatory surge of luteinizing hormone (LH), oocytes arrested at the late prophase I resume meiosis characterized by germinal vesicle breakdown (GVBD), chromosome condensation, and extrusion of the first polar body in preparation for fertilization and early embryonic development. However, oocytes express few or no LH receptors and are insensitive to direct LH stimulation. Thus, factors released by granulosa or theca cells expect to convey the LH stimuli to oocytes. To identify candidate ligand-receptor pairs potentially involved in the process of oocyte maturation, we performed DNA microarray analyses of ovarian transcripts in mice and identified Kit ligand (Kitl) as an ovarian factor stimulated by the LH/hCG surge. The purpose of this study is to investigate the roles of KITL in the nuclear and cytoplasmic maturation of preovulatory mouse oocytes.The levels of Kitl and c-kit transcripts in mouse ovaries and isolated ovarian cells were determined by real-time RT-PCR, while expression of KITL protein was examined by immunohistochemistry. Follicle culture, cumulus-oocyte complexes (COC) and denuded oocytes culture were used to evaluate the effect of KITL on mouse oocyte nuclear maturation. To assess the effect of KITL treatment on the cytoplasmic maturation of preovulatory oocytes, we performed in vitro maturation of oocytes followed by in vitro fertilization.Major increase of Kitl transcripts in granulosa cells and mouse ovaries, and predominant expression of c-kit in preovulatory oocytes were identified by real-time RT-PCR. Predominant expression of KITL protein was found in granulosa cells of preovulatory and small antral follicles at 4 h after hCG treatment. In vitro cultures demonstrated that treatment with KITL enhanced first polar body extrusion in a dose-dependent manner. Moreover, treatment of COC with KITL enhanced first polar body extrusion with increase in cyclin B1 synthesis which is important for the progression of meiotic maturation after GVBD. In contrast, treatment of cultured preovulatory follicles with KITL did not affect GVBD and KITL has no effect on cytoplasmic maturation of preovulatory oocytes.Our findings suggest potential paracrine roles of KITL in the nuclear maturation of preovulatory oocytes by promoting first polar body extrusion.

    View details for DOI 10.1186/1477-7827-7-26

    View details for Web of Science ID 000266491000001

    View details for PubMedID 19341483

  • Mechanistic insights into active site-associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Li, W., Tu, D., Li, L., Wollert, T., Ghirlando, R., Brunger, A. T., Ye, Y. 2009; 106 (10): 3722-3727

    Abstract

    Lys-48-linked polyubiquitination regulates a variety of cellular processes by targeting ubiquitinated proteins to the proteasome for degradation. Although polyubiquitination had been presumed to occur by transferring ubiquitin molecules, one at a time, from an E2 active site to a substrate, we recently showed that the endoplasmic reticulum-associated RING finger ubiquitin ligase gp78 can mediate the preassembly of Lys-48-linked polyubiquitin chains on the catalytic cysteine of its cognate E2 Ube2g2 and subsequent transfer to a substrate. Active site-linked polyubiquitin chains are detected in cells on Ube2g2 and its yeast homolog Ubc7p, but how these chains are assembled is unclear. Here, we show that gp78 forms an oligomer via 2 oligomerization sites, one of which is a hydrophobic segment located in the gp78 cytosolic domain. We further demonstrate that a gp78 oligomer can simultaneously associate with multiple Ube2g2 molecules. This interaction is mediated by a novel Ube2g2 surface distinct from the predicted RING binding site. Our data suggest that a large gp78-Ube2g2 heterooligomer brings multiple Ube2g2 molecules into close proximity, allowing ubiquitin moieties to be transferred between neighboring Ube2g2s to form active site-linked polyubiquitin chains.

    View details for DOI 10.1073/pnas.0808564106

    View details for Web of Science ID 000264036900017

    View details for PubMedID 19223579

  • Paracrine regulation of the resumption of oocyte meiosis by endothelin-1 DEVELOPMENTAL BIOLOGY Kawamura, K., Ye, Y., Liang, C. G., Kawamura, N., Gelpke, M. S., Rauch, R., Tanaka, T., Hsueh, A. J. 2009; 327 (1): 62-70

    Abstract

    Mammalian oocytes remain dormant in the diplotene stage of prophase I until the resumption of meiosis characterized by germinal vesicle breakdown (GVBD) following the preovulatory gonadotropin stimulation. Based on genome-wide analysis of peri-ovulatory DNA microarray to identify paracrine hormone-receptor pairs, we found increases in ovarian transcripts for endothelin-1 and endothelin receptor type A (EDNRA) in response to the preovulatory luteinizing hormone (LH)/human chorionic gonadotropin (hCG) stimulation. Immunohistochemical analyses demonstrated localization of EDNRA in granulosa and cumulus cells. In cultured preovulatory follicles, treatment with endothelin-1 promoted oocyte GVBD. The stimulatory effect of endothelin-1 was blocked by cotreatment with antagonists for the type A, but not related type B, receptor. The stimulatory effect of hCG on GVBD was partially blocked by the same antagonist. The endothelin-1 promotion of GVBD was found to be mediated by the MAPK/ERK pathway but not by the inhibitory G protein. Studies using cumulus-oocyte complexes and denuded oocytes demonstrated that the endothelin-1 actions are mediated by cumulus cells. Furthermore, intrabursal administration with endothelin-1 induced oocyte GVBD in preovulatory follicles. Our findings demonstrate a paracrine role of endothelin-1 in the induction of the resumption of meiosis and provide further understanding on the molecular mechanisms underlying the nuclear maturation of oocytes induced by the preovulatory LH surge.

    View details for DOI 10.1016/j.ydbio.2008.11.033

    View details for Web of Science ID 000263706200007

    View details for PubMedID 19111534

  • Solving Min-Max Multi-Depot Vehicle Routing Problem LECTURES ON GLOBAL OPTIMIZATION Carlsson, J., Ge, D., Subramaniam, A., Ye, Y. 2009; 55: 31-46
  • A Unified Framework for Dynamic Pari-Mutuel Information Market Design 10TH ACM CONFERENCE ON ELECTRONIC COMMERCE - EC 2009 Agrawal, S., Delage, E., Peters, M., Wang, Z., Ye, Y. 2009: 255-264
  • BIQUADRATIC OPTIMIZATION OVER UNIT SPHERES AND SEMIDEFINITE PROGRAMMING RELAXATIONS SIAM JOURNAL ON OPTIMIZATION Ling, C., Nie, J., Qi, L., Ye, Y. 2009; 20 (3): 1286-1310

    View details for DOI 10.1137/080729104

    View details for Web of Science ID 000277836500009

  • Budget Allocation in a Competitive Communication Spectrum Economy EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING Lin, M., Tsai, J., Ye, Y. 2009
  • Using total-variation regularization for intensity modulated radiation therapy inverse planning with field-specific numbers of segments PHYSICS IN MEDICINE AND BIOLOGY Zhu, L., Lee, L., Ma, Y., Ye, Y., Mazzeo, R., Xing, L. 2008; 53 (23): 6653-6672

    Abstract

    Currently, there are two types of treatment planning algorithms for intensity modulated radiation therapy (IMRT). The beamlet-based algorithm generates beamlet intensity maps with high complexity, resulting in large numbers of segments in the delivery after a leaf-sequencing algorithm is applied. The segment-based direct aperture optimization (DAO) algorithm includes the physical constraints of the deliverable apertures in the calculation, and achieves a conformal dose distribution using a small number of segments. However, the number of segments is pre-fixed in most of the DAO approaches, and the typical random search scheme in the optimization is computationally intensive. A regularization-based algorithm is proposed to overcome the drawbacks of the DAO method. Instead of smoothing the beamlet intensity maps as in many existing methods, we include a total-variation term in the optimization objective function to reduce the number of signal levels of the beam intensity maps. An aperture rectification algorithm is then applied to generate a significantly reduced number of deliverable apertures. As compared to the DAO algorithm, our method has an efficient form of quadratic optimization, with an additional advantage of optimizing field-specific numbers of segments based on the modulation complexity. The proposed approach is evaluated using two clinical cases. Under the condition that the clinical acceptance criteria of the treatment plan are satisfied, for the prostate patient, the total number of segments for five fields is reduced from 61 using the Eclipse planning system to 35 using the proposed algorithm; for the head and neck patient, the total number of segments for seven fields is reduced from 107 to 28. The head and neck result is also compared to that using an equal number of four segments for each field. The comparison shows that using field-specific numbers of segments achieves a much improved dose distribution.

    View details for DOI 10.1088/0031-9155/53/23/002

    View details for Web of Science ID 000260859000002

    View details for PubMedID 18997262

  • A Unified Theorem on SDP Rank Reduction MATHEMATICS OF OPERATIONS RESEARCH So, A. M., Ye, Y., Zhang, J. 2008; 33 (4): 910-920
  • Preface ALGORITHMICA Deng, X., Ye, Y. 2008; 52 (1): 1-2
  • Completion of Meiosis I of preovulatory oocytes and facilitation of preimplantation embryo development by glial cell line-derived neurotrophic factor DEVELOPMENTAL BIOLOGY Kawamura, K., Ye, Y., Kawamura, N., Jing, L., Groenen, P., Gelpke, M. S., Rauch, R., Hsueh, A. J., Tanaka, T. 2008; 315 (1): 189-202

    Abstract

    Optimal maturation of oocytes and successful development of preimplantation embryos is essential for reproduction. We performed DNA microarray analyses of ovarian transcripts and identified glial cell line-derived neurotrophic factor (GDNF) secreted by cumulus, granulosa, and theca cells as an ovarian factor stimulated by the preovulatory LH/hCG surge. Treatment of cumulus-oocyte complexes with GDNF enhanced first polar body extrusion with increase in cyclin B1 synthesis and the GDNF actions are likely mediated by its receptor GDNF family receptor-alpha1 (GFRA1) and a co-receptor ret proto-oncogene (Ret), both expressed in oocytes. However, treatment with GDNF did not affect germinal vesicle breakdown and cytoplasmic maturation of oocytes. During the preimplantation stages, GDNF was expressed in pregnant oviducts and uteri, whereas GFRA1 and Ret were expressed in embryos throughout early development with an increase after the early blastocyst stage. In blastocysts, both GDNF and GFRA1 were exclusively localized in trophectoderm cells, whereas Ret was detected in both cell lineages. Treatment with GDNF promoted the development of two-cell-stage embryos into blastocysts showing increased cell proliferation and decreased apoptosis mainly in trophectoderm cells. Our findings suggest potential paracrine roles of GDNF in the promotion of completion of meiosis I and the development of early embryos.

    View details for DOI 10.1016/j.ydbio.2007.12.029

    View details for Web of Science ID 000253750300015

    View details for PubMedID 18234170

  • FURTHER RELAXATIONS OF THE SEMIDEFINITE PROGRAMMING APPROACH TO SENSOR NETWORK LOCALIZATION SIAM JOURNAL ON OPTIMIZATION Wang, Z., Zheng, S., Ye, Y., Boyd, S. 2008; 19 (2): 655-673

    View details for DOI 10.1137/060669395

    View details for Web of Science ID 000260849600008

  • A FPTAS for Computing a Symmetric Leontief Competitive Economy Equilibrium INTERNET AND NETWORK ECONOMICS, PROCEEDINGS Zhu, Z., Dang, C., Ye, Y. 2008; 5385: 31-40
  • Parimutuel Betting on Permutations INTERNET AND NETWORK ECONOMICS, PROCEEDINGS Agrawal, S., Wang, Z., Ye, Y. 2008; 5385: 126-137
  • A distributed SDP approach for large-scale noisy anchor-free graph realization with applications to molecular conformation SIAM JOURNAL ON SCIENTIFIC COMPUTING Biswas, P., Toh, K., Ye, Y. 2008; 30 (3): 1251-1277

    View details for DOI 10.1137/05062754X

    View details for Web of Science ID 000255500500007

  • Algorithm 875: DSDP5 - Software for semidefinite programming ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE Benson, S. J., Ye, Y. 2008; 34 (3)
  • Structure and function of the yeast U-box-containing ubiquitin ligase Ufd2p PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Tu, D., Li, W., Ye, Y., Brunger, A. T. 2007; 104 (40): 15599-15606

    Abstract

    Proteins conjugated by Lys-48-linked polyubiquitin chains are preferred substrates of the eukaryotic proteasome. Polyubiquitination requires an activating enzyme (E1), a conjugating enzyme (E2), and a ligase (E3). Occasionally, these enzymes only assemble short ubiquitin oligomers, and their extension to full length involves a ubiquitin elongating factor termed E4. Ufd2p, as the first E4 identified to date, is involved in the degradation of misfolded proteins of the endoplasmic reticulum and of a ubiquitin-beta-GAL fusion substrate in Saccharomyces cerevisiae. The mechanism of action of Ufd2p is unknown. Here we describe the crystal structure of the full-length yeast Ufd2p protein. Ufd2p has an elongated shape consisting of several irregular Armadillo-like repeats with two helical hairpins protruding from it and a U-box domain flexibly attached to its C terminus. The U-box of Ufd2p has a fold similar to that of the RING (Really Interesting New Gene) domain that is present in certain ubiquitin ligases. Accordingly, Ufd2p has all of the hallmarks of a RING finger-containing ubiquitin ligase: it associates with its cognate E2 Ubc4p via its U-box domain and catalyzes the transfer of ubiquitin from the E2 active site to Ufd2p itself or to an acceptor ubiquitin molecule to form unanchored diubiquitin oligomers. Thus, Ufd2p can function as a bona fide E3 ubiquitin ligase to promote ubiquitin chain elongation on a substrate.

    View details for DOI 10.1073/pnas.0701369104

    View details for Web of Science ID 000249942700004

    View details for PubMedID 17890322

  • A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate NATURE Li, W., Tu, D., Brunger, A. T., Ye, Y. 2007; 446 (7133): 333-337

    Abstract

    In eukaryotic cells, many short-lived proteins are conjugated with Lys 48-linked ubiquitin chains and degraded by the proteasome. Ubiquitination requires an activating enzyme (E1), a conjugating enzyme (E2) and a ligase (E3). Most ubiquitin ligases use either a HECT (homologous to E6-associated protein C terminus) or a RING (really interesting new gene) domain to catalyse polyubiquitination, but the mechanism of E3 catalysis is poorly defined. Here we dissect this process using mouse Ube2g2 (E2; identical at the amino acid level to human Ube2g2) and human gp78 (E3), an endoplasmic reticulum (ER)-associated conjugating system essential for the degradation of misfolded ER proteins. We demonstrate by expressing recombinant proteins in Escherichia coli that Ube2g2/gp78-mediated polyubiquitination involves preassembly of Lys 48-linked ubiquitin chains at the catalytic cysteine of Ube2g2. The growth of Ube2g2-anchored ubiquitin chains seems to be mediated by an aminolysis-based transfer reaction between two Ube2g2 molecules that each carries a ubiquitin moiety in its active site. Intriguingly, polyubiquitination of a substrate can be achieved by transferring preassembled ubiquitin chains from Ube2g2 to a lysine residue in a substrate.

    View details for DOI 10.1038/nature05542

    View details for Web of Science ID 000244892900049

    View details for PubMedID 17310145

  • Pari-mutuel markets: Mechanisms and performance INTERNET AND NETWORK ECONOMICS, PROCEEDINGS Peters, M., So, A. M., Ye, Y. 2007; 4858: 82-95
  • Approximating the radii of point sets SIAM JOURNAL ON COMPUTING Varadarajan, K., Venkatesh, S., Ye, Y., Zhang, J. 2007; 36 (6): 1764-1776

    View details for DOI 10.1137/050627472

    View details for Web of Science ID 000246299400012

  • Semidefinite programming approaches for sensor network localization with noisy distance measurements IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING Biswas, P., Liang, T., Toh, K., Ye, Y., Wang, T. 2006; 3 (4): 360-371
  • Improved complexity results on solving real-number linear feasibility problems MATHEMATICAL PROGRAMMING Ye, Y. Y. 2006; 106 (2): 339-363
  • Lot-sizing scheduling with batch setup times JOURNAL OF SCHEDULING Chen, B., Ye, Y. Y., Zhang, J. W. 2006; 9 (3): 299-310
  • Semidefinite Programming Based Algorithms for Sensor Network Localization ACM TRANSACTIONS ON SENSOR NETWORKS Biswas, P., Lian, T., Wang, T., Ye, Y. 2006; 2 (2)
  • Stochastic combinatorial optimization with controllable risk aversion level - (Extended abstract) APPROXIMATION, RANDOMIZATION AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES So, A. M., Zhang, J., Ye, Y. 2006; 4110: 224-235
  • A Semidefinite Programming Approach to Tensegrity Theory and Realizability of Graphs PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS So, A. M., Ye, Y. 2006: 766-775
  • Distributed method for solving semidefinite programs arising from ad hoc wireless sensor network localization MULTISCALE OPTIMIZATION METHODS AND APPLICATIONS Biswas, P., Ye, Y. Y. 2006; 82: 69-84
  • Area Editors' Statements OPERATIONS RESEARCH Fourer, R., Hazen, G. B., Oren, S. S., Broadie, M. N., Duenyas, I., Song, J. S., Simester, D., Kress, M., Ye, Y. Y., Trick, M. A., Graves, S. C., Zenios, S. A., van Ryzin, G. J., Henderson, S. G., Kumar, S., Balakrishnan, A., Ball, M. O. 2006; 54 (1): 5-10
  • SpaseLoc: An adaptive subproblem algorithm for scalable wireless sensor network localization SIAM JOURNAL ON OPTIMIZATION Carter, M. W., Jin, H. H., Saunders, M. A., Ye, Y. 2006; 17 (4): 1102-1128

    View details for DOI 10.1137/040621600

    View details for Web of Science ID 000244631800007

  • Approximation algorithms for metric facility location problems SIAM JOURNAL ON COMPUTING Mahdian, M., Ye, Y., Zhang, J. 2006; 36 (2): 411-432
  • Leontief Economies Encode Nonzero Sum Two-Player Games PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS Codenotti, B., Saberi, A., Varadarajan, K., Ye, Y. 2006: 659-667
  • A new complexity result on solving the Markov decision problem MATHEMATICS OF OPERATIONS RESEARCH Ye, Y. Y. 2005; 30 (3): 733-749
  • A multiexchange local search algorithm for the capacitated facility location problem MATHEMATICS OF OPERATIONS RESEARCH Zhang, J. W., Chen, B., Ye, Y. Y. 2005; 30 (2): 389-403
  • On solving coverage problems in a wireless sensor network using Voronoi diagrams INTERNET AND NETWORK ECONOMICS, PROCEEDINGS So, A. M., Ye, Y. Y. 2005; 3828: 584-593
  • Computing the Arrow-Debreu competitive market equilibrium and its extensions ALGORITHMIC APPLICATIONS IN MANAGEMENT, PROCEEDINGS Ye, Y. Y. 2005; 3521: 3-5
  • Semidefinite programming algorithms for sensor network localization using angle information 2005 39TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1 AND 2 Biswas, P., Aghajan, H., Ye, Y. 2005: 220-224
  • On approximating complex quadratic optimization problems via semidefinite programming relaxations INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS So, A. M., Zhang, J. W., Ye, Y. Y. 2005; 3509: 125-135
  • Theory of Semidefinite Programming for Sensor Network Localization PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS So, A. M., Ye, Y. 2005: 405-414
  • Exchange market equilibria with Leontief's utility: Freedom of pricing leads to rationality INTERNET AND NETWORK ECONOMICS, PROCEEDINGS Ye, Y. Y. 2005; 3828: 14-23
  • Improved approximations for max set splitting and max NAE SAT DISCRETE APPLIED MATHEMATICS Zhang, J. W., Ye, Y. Y., Han, Q. M. 2004; 142 (1-3): 133-149
  • Measurement of inclusive momentum spectra and multiplicity distributions of charged particles at root s similar to 2-5 GeV PHYSICAL REVIEW D Bai, J. Z., Ban, Y., Bian, J. G., Cai, X., Chang, J. F., Chen, H. F., Chen, H. S., Chen, H. X., Chen, J., Chen, J. C., Chen, Y. B., Chi, S. P., Chu, Y. P., Cui, X. Z., Dai, H. L., Dai, Y. S., Dai, Y. M., Dong, L. Y., Du, S. X., Du, Z. Z., Dunwoodie, W., Fang, J., Fang, S. S., Fu, C. D., Fu, H. Y., Fu, L. P., Gao, C. S., Gao, M. L., Gao, Y. N., Gong, M. Y., Gong, W. X., Gu, S. D., Guo, Y. N., Guo, Y. Q., Guo, Z. J., Han, S. W., Harris, F. A., He, J., He, K. L., He, M., He, X., Heng, Y. K., Hu, H. M., Hu, T., Huang, G. S., Huang, L., Huang, X. P., Izen, J. M., Ji, X. B., Jia, Q. Y., Jiang, C. H., Jiang, X. S., Jin, D. P., Jin, S., Jin, Y., Jones, B. D., Ke, Z. J., Kong, D., Lai, Y. F., Li, F., Li, G., Li, H. H., Li, J., Li, J. C., Li, K., Li, Q. J., Li, R. B., Li, R. Y., Li, W., Li, W. G., Li, X. Q., Li, X. S., Liang, Y. F., Liao, H. B., Liu, C. X., Liu, F., Liu, F., Liu, H. M., Liu, J. B., Liu, J. P., Liu, R. G., Liu, Y., Liu, Z. A., Liu, Z. X., Lou, X. C., Lu, G. R., Lu, F., Lu, H. J., Lu, J. G., Luo, C. L., Luo, X. L., Ma, E. C., Ma, F. C., Ma, J. M., Ma, L. L., Ma, X. Y., Malchow, R., Mao, Z. P., Meng, X. C., Mo, X. H., Nie, J., Nie, Z. D., Olsen, S. L., Peng, H. P., Qi, N. D., Qian, C. D., Qiu, J. F., Rong, G., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, F., Song, L. W., Sun, H. S., Sun, S. S., Sun, Y. Z., Sun, Z. J., Tang, S. Q., Tang, X., Tian, D., Tian, Y. R., Toki, W., Tong, G. L., Varner, G. S., Wang, J. Z., Wang, L., Wang, L. S., Wang, M., Wang, M., Wang, P., Wang, P. L., Wang, W. F., Wang, Y. F., Wang, Z., Wang, Z., Wang, Z., Wang, Z. Y., Wei, C. L., Wu, N., Xia, X. M., Xie, X. X., Xu, G. F., Xu, Y., Xue, S. T., Yan, M. L., Yan, W. B., Yang, F., Yang, G. A., Yang, H. X., Yang, J., Yang, S. D., Yang, Y. X., Ye, M. H., Ye, Y. X., Ying, J., Yu, C. S., Yu, G. W., Yuan, C. Z., Yuan, J. M., Yuan, Y., Yue, Q., Zang, S. L., Zeng, Y., Zhang, B. X., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, H. Y., Zhang, J., ZHANG, J. M., Zhang, J. W., Zhang, L. S., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhang, Y. J., Zhang, Y. Y., Zhang, Z. P., Zhao, D. X., Zhao, J. E., Zhao, J. B., Zhao, J. W., Zhao, P. P., Zhao, W. R., Zhao, Y. B., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhong, X. C., Zhou, B. Q., Zhou, G. M., Zhou, L., Zhou, N. F., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. C., Zhu, Y. S., Zhu, Z. A., Zhuang, B. A., Zou, B. S. 2004; 69 (7)
  • A multi-exchange local search algorithm for the capacitated facility location problem - (Extended abstract) INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS Zhang, J. W., Chen, B., Ye, Y. Y. 2004; 3064: 219-233
  • Improved combinatorial approximation algorithms for the k-level facility location problem SIAM JOURNAL ON DISCRETE MATHEMATICS Ageev, A., Ye, Y. Y., Zhang, J. W. 2004; 18 (1): 207-217
  • Semidefinite programming for ad hoc wireless sensor network localization IPSN '04: THIRD INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING IN SENSOR NETWORKS Biswas, P., Ye, Y. Y. 2004: 46-54
  • An approximation algorithm for scheduling two parallel machines with capacity constraints DISCRETE APPLIED MATHEMATICS Yang, H., Ye, Y. Y., Zhang, J. W. 2003; 130 (3): 449-467
  • Observation of a near-threshold enhancement in the p(p)over-bar mass spectrum from radiative J/psi ->gamma p(p)over-bar deecays PHYSICAL REVIEW LETTERS Bai, J. Z., Ban, Y., Bian, J. G., Cai, X., Chang, J. F., Chen, H. F., Chen, H. S., Chen, J., Chen, J., Chen, J. C., Chen, Y. B., Chi, S. P., Chu, Y. P., Cui, X. Z., Dai, Y. M., Dai, Y. S., Dong, L. Y., Du, S. X., Du, Z. Z., Dunwoodie, W., Fang, J., Fang, S. S., Fu, C. D., Fu, H. Y., Fu, L. P., Gao, C. S., Gao, M. L., Gao, Y. N., Gong, M. Y., Gong, W. X., Gu, S. D., Guo, Y. N., Guo, Y. Q., Guo, Z. J., Han, S. W., Harris, F. A., He, J., He, K. L., He, M., He, X., Heng, Y. K., Hong, T., Hu, H. M., Hu, T., Huang, G. S., Huang, L., Huang, X. P., Izen, J. M., Ji, X. B., Jiang, C. H., Jiang, X. S., Jin, D. P., Jin, S., Jin, Y., Jones, B. D., Ke, Z. J., Kong, D., Lai, Y. F., Li, F., Li, G., Li, H. H., Li, J., Li, J. C., Li, K., Li, Q. J., Li, R. B., Li, R. Y., Li, W., Li, W. G., Li, X. Q., Li, X. S., Liu, C. F., Liu, C. X., Liu, F., Liu, F., Liu, H. M., Liu, J. B., Liu, J. P., Liu, R. G., Liu, Y., Liu, Z. A., Liu, Z. X., Lou, X. C., Lu, G. R., Lu, F., Lu, H. J., Lu, J. G., Lu, Z. J., Luo, X. L., Ma, E. C., Ma, F. C., Ma, J. M., Malchow, R., Mao, Z. P., Meng, X. C., Mo, X. H., Nie, J., Nie, Z. D., Olsen, S. L., Paluselli, D., Peng, H. P., Qi, N. D., Qian, C. D., Qiu, J. F., Rong, G., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, F., Song, L. W., Sun, H. S., Sun, S. S., Sun, Y. Z., Sun, Z. J., Tang, S. Q., Tang, X., Tian, D., Tian, Y. R., Toki, W., Tong, G. L., Varner, G. S., Wang, J., Wang, J. Z., Wang, L., Wang, L. S., Wang, M., Wang, M., Wang, P., Wang, P. L., Wang, W. F., Wang, Y. F., Wang, Z., Wang, Z., Wang, Z., Wang, Z. Y., Wei, C. L., Wu, N., Xia, X. M., Xie, X. X., Xu, G. F., Xu, Y., Xue, S. T., Yan, M. L., Yan, W. B., Yang, G. A., Yang, H. X., Yang, J., Yang, S. D., Ye, M. H., Ye, Y. X., Ying, J., Yu, C. S., Yu, G. W., Yuan, C. Z., Yuan, J. M., Yuan, Y., Yue, Q., Zang, S. L., Zeng, Y., Zhang, B. X., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, H. Y., Zhang, J., ZHANG, J. M., Zhang, J. W., Zhang, L. S., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. J., Zhang, Y. Y., Zhang, Y. Y., Zhang, Z. P., Zhao, D. X., Zhao, J. W., Zhao, J. W., Zhao, P. P., Zhao, W. R., Zhao, Y. B., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhong, X. C., Zhou, B. Q., Zhou, G. M., Zhou, L., Zhou, N. F., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. C., Zhu, Y. S., Zhu, Z. A., Zhuang, B. A., Zou, B. S. 2003; 91 (2)
  • Search for lepton flavor violation process J/psi -> e mu PHYSICS LETTERS B Bai, J. Z., Ban, Y., Bian, J. G., Cai, X., Chang, J. F., Chen, H. F., Chen, H. S., Chen, J., Chen, J., Chen, J. C., Chen, Y. B., Chi, S. P., Chu, Y. P., Cui, X. Z., Dai, Y. M., Dai, Y. S., Dong, L. Y., Du, S. X., Du, Z. Z., Dunwoodie, W., Fang, J., Fang, S. S., Fu, C. D., Fu, H. Y., Fu, L. P., Gao, C. S., Gao, M. L., Gao, Y. N., Gong, M. Y., Gong, W. X., Gu, S. D., Guo, Y. N., Guo, Y. Q., Guo, Z. J., Han, S. W., Harris, F. A., He, J., He, K. L., He, M., He, X., Heng, Y. K., Hong, T., Hu, H. M., Hu, T., Huang, G. S., Huang, L., Huang, X. P., Izen, J. M., Ji, X. B., Jiang, C. H., Jiang, X. S., Jin, D. P., Jin, S., Jin, Y., Jones, B. D., Ke, Z. J., Kong, D., Lai, Y. F., Li, F., Li, G., Li, H. H., Li, J., Li, J. C., Li, K., Li, Q. J., Li, R. B., Li, R. Y., Li, W., Li, W. G., Li, X. Q., Liu, X. S., Liu, C. F., Liu, C. X., Liu, F., Liu, F., Liu, H. M., Liu, J. B., Liu, J. P., Liu, R. G., Liu, Y., Liu, Z. A., Liu, Z. X., Lou, X. C., Lu, G. R., Lu, F., Lu, H. J., Lu, J. G., Lu, Z. J., Luo, X. L., Ma, E. C., Ma, F. C., Ma, J. M., Malchow, R., Mao, Z. P., Meng, X. C., Mo, X. H., Nie, J., Nie, Z. D., Olsen, S. L., Paluselli, D., Peng, H. P., Qi, N. D., Qian, C. D., Qiu, J. F., Rong, G., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, F., Song, L. W., Sun, H. S., Sun, S. S., Sun, Y. Z., Sun, Z. J., Tang, S. Q., Tang, X., Tian, D., Tian, Y. R., Toki, W., Tong, G. L., Varner, G. S., Wang, J., Wang, J. Z., Wang, L., Wang, L. S., Wang, M., Wang, M., Wang, P., Wang, P. L., Wang, W. F., Wang, Y. F., Wang, Z., Wang, Z., Wang, Z., Wang, Z. Y., Wei, C. L., Wu, N., Xia, X. M., Xie, X. X., Xu, G. F., Xu, Y., Xue, S. T., Yan, M. L., Yan, W. B., Yang, G. A., Yang, H. X., Yang, J., Yang, S. D., Ye, M. H., Ye, Y. X., Ying, J., Yu, C. S., Yu, G. W., Yuan, C. Z., Yuan, J. M., Yuan, Y., Yue, Q., Zang, S. L., Zeng, Y., Zhang, B. X., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, H. Y., Zhang, J., ZHANG, J. M., Zhang, J. W., Zhang, L. S., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. J., Zhang, Y. Y., Zhang, Y. Y., Zhang, Z. P., Zhao, D. X., Zhao, J. W., Zhao, J. W., Zhao, P. P., Zhao, W. R., Zhao, Y. B., Zhao, D. X., Zhao, J. W., Zhao, J. W., Zhao, P. P., Zhao, W. R., Zhao, Y. B., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhong, X. C., Zhou, B. Q., Zhou, G. M., Zhou, L., Zhou, N. F., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. C., Zhu, Y. S., Zhu, Z. A., Zhuang, B. A., Zou, B. S. 2003; 561 (1-2): 49-54
  • Measurements of the mass and full-width of the eta c meson PHYSICS LETTERS B Bai, J. Z., Ban, Y., Bian, J. G., Cai, X., Chang, J. F., Chen, H. F., Chen, H. S., Chen, J., Chen, J. C., Chen, Y. B., Chi, S. P., Chu, Y. P., Cui, X. Z., Dai, Y. M., Dai, Y. S., Dong, L. Y., Du, S. X., Du, Z. Z., Dunwoodie, W., Fang, J., Fang, S. S., Fu, C. D., Fu, H. Y., Fu, L. P., Gao, C. S., Gao, M. L., Gao, Y. N., Gong, M. Y., Gong, W. X., Gu, S. D., Guo, Y. N., Guo, Y. Q., Guo, Z. J., Han, S. W., Harris, F. A., He, J., He, K. L., He, M., He, X., Heng, Y. K., Hong, T., Hu, H. M., Hu, T., Huang, G. S., Huang, L., Huang, X. P., Izen, J. M., Ji, X. B., Jiang, C. H., Jiang, X. S., Jin, D. R., Jin, S., Jin, Y., Jones, B. D., Ke, Z. J., Kong, D., Lai, Y. F., Li, F., Li, G., Li, H. H., Li, J., Li, J. C., Li, K., Li, Q. J., Li, R. B., Li, R. Y., Li, W., Li, W. G., Li, X. Q., Li, X. S., Liu, C. F., Liu, C. X., Liu, F., Liu, F., Liu, H. M., Liu, J. B., Liu, J. P., Liu, R. G., Liu, Y., Liu, Z. A., Liu, Z. X., Lou, X. C., Lu, G. R., Lu, F., Lu, H. J., Lu, J. G., Lu, Z. J., Luo, X. L., Ma, E. C., Ma, F. C., Ma, J. M., Mao, Z. P., Meng, X. C., Mo, X. H., Nie, J., Nie, Z. D., Olsen, S. L., Paluselli, D., Peng, H. P., Qi, N. D., Qian, C. D., Qiu, J. F., Rong, G., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, F., Song, L. W., Sun, H. S., Sun, S. S., Sun, Y. Z., Sun, Z. J., Tang, S. Q., Tang, X., Tian, D., Tian, Y. R., Tong, G. L., Varner, G. S., Wang, J., Wang, J. Z., Wang, L., Wang, L. S., Wang, M., Wang, M., Wang, P., Wang, P. L., Wang, W. F., Wang, Y. F., Wang, Z., Wang, Z., Wang, Z., Wang, Z. Y., Wei, C. L., Wu, N., Xia, X. M., Xie, X. X., Xu, G. F., Xu, Y., Xue, S. T., Yan, M. L., Yan, W. B., Yang, G. A., Yang, H., Yang, J., Yang, S. D., Ye, M. H., Ye, Y. X., Ying, J., Yu, C. S., Yu, G. W., Yuan, C. Z., Yuan, J. M., Yuan, Y., Yue, Q., Zang, S. L., Zeng, Y., Zhang, B. X., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, H. Y., Zhang, J., ZHANG, J. M., Zhang, J. W., Zhang, L. S., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. J., Zhang, Y. Y., Zhang, Y. Y., Zhang, Z. P., Zhao, D. X., Zhao, J. W., Zhao, J. W., Zhao, P. P., Zhao, W. R., Zhao, Y. B., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhong, X. C., Zhou, B. Q., Zhou, G. M., Zhou, L., Zhou, N. F., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. C., Zhu, Y. S., Zhu, Z. A., Zhuang, B. A., Zou, B. S. 2003; 555 (3-4): 174-180
  • psi(2S) two- and three-body hadronic decays PHYSICAL REVIEW D Bai, J. Z., Ban, Y., Bian, J. G., Blum, I., Cai, X., Chang, J. F., Chen, H. F., Chen, H. S., Chen, J., Chen, J., Chen, J. C., Chen, Y. B., Chi, S. P., Chu, Y. P., Cui, X. Z., Dai, Y. S., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Fang, J., Fang, S. S., Fu, H. Y., Fu, L. P., Gao, C. S., Gao, Y. N., Gong, M. Y., Gratton, P., Gu, S. D., Guo, Y. N., Guo, Y. Q., Guo, Z. J., Han, S. W., Harris, F. A., He, J., He, K. L., He, M., He, X., Heng, Y. K., Hong, T., Hitlin, D. G., Hu, H. M., Hu, T., Huang, G. S., Huang, X. P., Izen, J. M., Ji, X. B., Jiang, C. H., Jiang, X. S., Jin, D. P., Jin, S., Jin, Y., Jones, B. D., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kong, D., Lai, Y. F., Li, G., Li, H. H., Li, J., Li, J. C., Li, Q. J., Li, R. Y., Li, W., Li, W. G., Li, X. Q., Liu, C. F., Liu, F., Liu, F., Liu, H. M., Liu, J. P., Liu, R. G., Liu, T. R., Liu, Y., Liu, Z. A., Liu, Z. X., Lou, X. C., Lowery, B., Lu, G. R., Lu, F., Lu, H. J., Lu, J. G., Lu, Z. J., Luo, X. L., Ma, E. C., Ma, F. C., Ma, J. M., Malchow, R., Mao, Z. P., Meng, X. C., Mo, X. H., Nie, J., Nie, Z. D., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Peng, H. P., Porter, F., Qi, N. D., Qian, C. D., Qiu, J. F., Rong, G., Schernau, M., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, F., Standifird, J., Sun, H. S., Sun, S. S., Sun, Y. Z., Tang, X., Tian, D., Toki, W., Tong, G. L., Varner, G. S., Wang, J., Wang, J. Z., Wang, L., Wang, L. S., Wang, M., Wang, M., Wang, P., Wang, P. L., Wang, W. F., Wang, Y. F., Wang, Y. Y., Wang, Z., Wang, Z., Wang, Z. Y., Weaver, M., Wei, C. L., Wu, N., Xia, X. M., Xie, X. X., Xu, G. F., Xu, Y., Xue, S. T., Yan, M. L., Yan, W. B., Yang, C. Y., Yang, G. A., Yang, H. X., Yang, W., Ye, M. H., Ye, S. W., Ye, Y. X., Ying, J., Yu, C. S., Yu, G. W., Yuan, C. Z., Yuan, J. M., Yuan, Y., Yue, Q., Zeng, Y., Zhang, B. X., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, H. Y., Zhang, J., Zhang, J. W., Zhang, L., Zhang, L. S., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhang, Y. Y., Zhang, Z. P., Zhao, D. X., Zhao, J. W., Zhao, J. W., Zhao, P. P., Zhao, W. R., Zhao, Y. B., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhong, X. C., Zhou, B. Q., Zhou, G. M., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhu, Z. A., Zhuang, B. A., Zou, B. S. 2003; 67 (5)
  • Radiative decay of the psi(2S) into two pseudoscalar mesons PHYSICAL REVIEW D Bai, J. Z., Ban, Y., Bian, J. G., Blum, I., Chen, A. D., Chen, G. P., Chen, H. F., Chen, H. S., Chen, J., Chen, J. C., Chen, X. D., Chen, Y., Chen, Y. B., Cheng, B. S., Choi, J. B., Cui, X. Z., Ding, H. L., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Gao, C. S., Gao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Guo, Y. N., Guo, Z. J., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, K. L., He, M., Heng, Y. K., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Huang, G. S., Huang, X. P., Huang, Y. Z., Izen, J. M., Jiang, C. H., Jin, Y., Jones, B. D., Ju, X., Kang, J. S., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kim, H. J., Kim, S. K., Kim, T. Y., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, J. C., Li, P. Q., Li, W., Li, W. G., Li, X. H., Li, X. N., Li, X. Q., Li, Z. C., Liu, B., Liu, F., Liu, F., Liu, H. M., Liu, J., Liu, J. P., Liu, R. G., Liu, Y., Liu, Z. X., Lou, X. C., Lowery, B., Lu, G. R., Lu, F., Lu, J. G., Luo, X. L., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Mo, X. H., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Park, H. B., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, H. Y., Shen, X. Y., Shi, F., Shi, H. Z., Song, X. F., Standifird, J., Suh, J. Y., Sun, H. S., Sun, L. F., Sun, Y. Z., Tang, S. Q., Toki, W., Tong, G. L., Varner, G. S., Wang, F., Wang, L., Wang, L. S., Wang, L. Z., Wang, P., Wang, P. L., Wang, S. M., Wang, Y. Y., Wang, Z. Y., Weaver, M., Wei, C. L., Wu, N., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, Y., Xie, Y. H., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, H. X., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yu, C. S., Yu, C. X., Yu, G. W., Yu, Y. H., Yu, Z. Q., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. W., Zhang, L., Zhang, L., Zhang, L. S., Zhang, P., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, B. Q., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhu, Z. A., Zhuang, B. A. 2003; 67 (3)
  • An improved algorithm for approximating the radii of point sets APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION Ye, Y. Y., Zhang, J. W. 2003; 2764: 178-187
  • Improved combinatorial approximation algorithms for the k-level facility location problem AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS Ageev, A., Ye, Y. Y., Zhang, J. W. 2003; 2719: 145-156
  • New results on quadratic minimization SIAM JOURNAL ON OPTIMIZATION Ye, Y. Y., Zhang, S. Z. 2003; 14 (1): 245-267
  • A 2-approximation algorithm for the soft-capacitated facility location problem APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION Mahdian, M., Ye, Y. Y., Zhang, J. W. 2003; 2764: 129-140
  • A measurement of psi (2S) resonance parameters PHYSICS LETTERS B Bai, J. Z., Ban, Y., Bian, J. G., Blum, I., Cai, X., Chang, J. F., Chen, H. F., Chen, H. S., Chen, J., Chen, J., Chen, J. C., Chen, Y. B., Chi, S. P., Chu, Y. P., Cui, X. Z., Dai, Y. S., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Fang, J., Fang, S. S., Fu, H. Y., Fu, L. P., Gao, C. S., Gao, Y. N., Gong, M. Y., Gratton, P., Gu, S. D., Guo, Y. N., Guo, Y. Q., Guo, Z. J., Han, S. W., Harris, F. A., He, J., He, K. L., He, M., He, X., Heng, Y. K., Hong, T., Hu, H. M., Hu, T., Huang, G. S., Huang, X. P., Izen, J. M., Ji, X. B., Jiang, C. H., Jiang, X. S., Jin, D. P., Jin, S., Jin, Y., Jones, B. D., Ke, Z. J., Kong, D., Lai, Y. F., Li, G., Li, H. H., Li, J., Li, J. C., Li, Q. J., Li, R. Y., Li, W., Li, W. G., Li, X. Q., Liu, C. F., Liu, F., Liu, H. M., Liu, J. P., Liu, R. G., Liu, T. R., Liu, Y., Liu, Z. A., Liu, Z., Lou, X. C., Lowery, B., Lu, G. R., Lu, F., Lu, H. J., Lu, J. G., Lu, Z. J., Luo, X. L., Ma, E. C., Ma, F. C., Ma, J. M., Malchow, R., Mao, Z. P., Meng, X. C., Mo, X. H., Nie, J., Nie, Z. D., Olsen, S. L., Paluselli, D., Pan, L. J., Panetta, J., Peng, H. P., Porter, F., Qi, N. D., Qian, C. D., Qiu, J. F., Rong, G., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, F., Standifird, J., Sun, H. S., Sun, S. S., Sun, Y. Z., Tang, X., Tian, D., Toki, W., Tong, G. L., Varner, G. S., Wang, J., Wang, J. Z., Wang, L., Wang, L. S., Wang, M., Wang, M., Wang, P., Wang, P. L., Wang, W. F., Wang, Y. F., Wang, Y., Wang, Z., Wang, Z., Wang, Z., Weaver, M., Wei, C. L., Wu, N., Xia, X. M., Xie, X. X., Xu, G. F., Xu, Y., Xue, S. T., Yan, M. L., Yan, W. B., Yang, C. Y., Yang, G. A., Yang, H., Ye, M. H., Ye, S. W., Ye, Y. X., Ying, J., Yu, C. S., Yu, G. W., Yuan, C. Z., Yuan, J. M., Yuan, Y., Yue, Q., Zeng, Y., Zhang, B. X., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, H. Y., Zhang, J., Zhang, J. W., Zhang, L., Zhang, L. S., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhang, Y. Y., Zhang, Z. P., Zhao, D., Zhao, J. W., Zhao, J. W., Zhao, P. P., Zhao, W. R., Zhao, Y. B., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhong, X. C., Zhou, B. Q., Zhou, G. M., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhu, Z. A., Zhuang, B. A., Zou, B. S. 2002; 550 (1-2): 24-32
  • A note on the maximization version of the multi-level facility location problem OPERATIONS RESEARCH LETTERS Zhang, J. W., Ye, Y. Y. 2002; 30 (5): 333-335
  • Measurements of the cross section for e(+)e(-) -> hadrons at center-of-mass energies from 2 to 5 GeV PHYSICAL REVIEW LETTERS Bai, J. Z., Ban, Y., Bian, J. G., Chen, A. D., Chen, H. F., Chen, H. S., Chen, J. C., Chen, X. D., Chen, Y. B., Cheng, B. S., Chi, S. P., Chu, Y. P., Choi, J. B., Cui, X. Z., Dai, Y. S., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Fu, H. Y., Fu, L. P., Gao, C. S., Gu, S. D., Guo, Y. N., Guo, Z. J., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, K. L., He, M., He, X., Hong, T., Heng, Y. K., Hu, G. Y., Hu, H. M., Hu, Q. H., Hu, T., Huang, G. S., Huang, X. P., Huang, Y. Z., Izen, J. M., Ji, X. B., Jiang, C. H., Jin, Y., Jones, B. D., Kang, J. S., Ke, Z. J., Kim, H. J., Kim, S. K., Kim, T. Y., Kong, D., Lai, Y. F., Li, D., Li, H. B., Li, H. H., Li, J., Li, J. C., Li, P. Q., Li, Q. J., Li, R. Y., Li, W., Li, W. G., Li, X. N., Li, X. Q., Liu, B., Liu, F., Liu, F., Liu, H. M., Liu, J., Liu, J. P., Liu, T. R., Liu, R. G., Liu, Y., Liu, Z. X., Lou, X. C., Lu, G. R., Lu, F., Lu, J. G., Lu, Z. J., Luo, X. L., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Mo, X. H., Nie, J., Nie, Z. D., Olsen, S. L., Paluselli, D., Park, H., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Que, Y. K., Rong, G., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, F., Shi, H. Z., Song, X. F., Suh, J. Y., Sun, H. S., Sun, L. F., Sun, Y. Z., Tang, S. Q., Toki, W., Tong, G. L., Varner, G. S., Wang, J., Wang, J. Z., Wang, L., Wang, L. S., Wang, P., Wang, P. L., Wang, S. M., Wang, Y. Y., Wang, Z. Y., Wei, C. L., Wu, N., Xi, D. M., Xia, X. M., Xie, X. X., Xu, G. F., Xu, Y., Xue, S. T., Yan, W. B., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, G. A., Yang, H. X., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yu, C. S., Yu, C. X., Yu, G. W., Yuan, Y., Zhang, B. Y., Zhang, C., Zhang, C. C., Zhang, D. H., Zhang, H. L., Zhang, H. Y., Zhang, J., Zhang, J. W., Zhang, L., Zhang, L. S., Zhang, P., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhang, Z. P., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, J. W., Zhao, M., Zhao, P. P., Zhao, W. R., Zhao, Y. B., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, B. Q., Zhou, G. M., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhu, Z. A., Zhuang, B. A., Zou, B. S. 2002; 88 (10)

    Abstract

    We report values of R = sigma(e(+)e(-)-->hadrons)/sigma(e(+)e(-)-->mu(+)mu(-)) for 85 center-of-mass energies between 2 and 5 GeV measured with the upgraded Beijing Spectrometer at the Beijing Electron-Positron Collider.

    View details for DOI 10.1103/PhysRevLett.88.101802

    View details for Web of Science ID 000174342000013

    View details for PubMedID 11909342

  • First measurement of the branching fraction of the decay psi(2S)->tau(+)tau(-) PHYSICAL REVIEW D Bai, J. Z., Ban, Y., Bian, J. G., Blum, I., Chen, A. D., Chen, H. F., Chen, H. S., Chen, J., Chen, J. C., Chen, X. D., Chen, Y., Chen, Y. B., Cheng, B. S., Chi, S. P., Chu, Y. P., Choi, J. B., Cui, X. Z., Dai, Y. S., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Fu, H. Y., Fu, L. P., Gao, C. S., Gratton, P., Gu, S. D., Gu, Y. F., Guo, Y. N., Guo, Z. J., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, K. L., He, M., He, X., Hong, T., Heng, Y. K., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, Q. H., Hu, T., Huang, G. S., Huang, X. P., Huang, Y. Z., Izen, J. M., Ji, X. B., Jiang, C. H., Jin, Y., Jones, B. D., Kang, J. S., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kim, H. J., Kim, S. K., Kim, T. Y., Kong, D., Lai, Y. F., Lankford, A., Li, D., Li, H. B., Li, H. H., Li, J., Li, J. C., Li, P. Q., Li, Q. J., Li, R. Y., Li, W., Li, W. G., Li, X. N., Li, X. Q., Liu, B., Liu, F., Liu, F., Liu, H. M., Liu, J., Liu, J. P., Liu, T. R., Liu, R. G., Liu, Y., Liu, Z. X., Lou, X. C., Lowery, B., Lu, G. R., Lu, F., Lu, J. G., Lu, Z. J., Luo, X. L., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Mo, X. H., Nie, J., Nie, Z. D., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Park, H., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Que, Y. K., Rong, G., Schernau, M., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, F., Shi, H. Z., Song, X. F., Standifird, J., Suh, J. Y., Sun, H. S., Sun, L. F., Sun, Y. Z., Tang, S. Q., Toki, W., Tong, G. L., Varner, G. S., Wang, J., Wang, J. Z., Wang, L., Wang, L. S., Wang, M., Wang, P., Wang, P. L., Wang, S. M., Wang, Y. Y., Wang, Z. Y., Weaver, M., Wei, C. L., Wu, J. M., Wu, N., Xi, D. M., Xia, X. M., Xie, X. X., Xu, G. F., Xu, Y., Xue, S. T., Yan, W. B., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, G. A., Yang, H. X., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yu, C. S., Yu, C. X., Yu, G. W., Yuan, Y., Zhang, B. Y., Zhang, C., Zhang, C. C., Zhang, D. H., Zhang, H. L., Zhang, H. Y., Zhang, J., Zhang, J. W., Zhang, L., Zhang, L. S., Zhang, P., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhang, Z. P., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, J. W., Zhao, M., Zhao, P. P., Zhao, W. R., Zhao, Y. B., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, B. Q., Zhou, G. M., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhu, Z. A., Zhuang, B. A., Zou, B. S. 2002; 65 (5)
  • Improved approximation algorithms for metric facility location problems APPROXIMATION ALGORITHMS FOR COMBINATORIAL OPTIMIZATION, PROCEEDINGS Mahdian, M., Ye, Y. Y., Zhang, J. W. 2002; 2462: 229-242
  • Measurement of psi(2S) decays to baryon pairs PHYSICAL REVIEW D Bai, J. Z., Ban, Y., Bian, J. G., Blum, I., Chen, A. D., Chen, G. P., Chen, H. F., Chen, H. S., Chen, J., Chen, J. C., Chen, X. D., Chen, Y., Chen, Y. B., Cheng, B. S., Choi, J. B., Cui, X. Z., Ding, H. L., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Gao, C. S., Gao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Guo, Y. N., Guo, Z. J., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, K. L., He, M., Heng, Y. K., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Huang, G. S., Huang, X. P., Huang, Y. Z., Izen, J. M., Jiang, C. H., Jin, Y., Jones, B. D., Ju, X., Kang, J. S., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kim, H. J., Kim, S. K., Kim, T. Y., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, J. C., Li, P. Q., Li, W., Li, W. G., Li, X. H., Li, X. N., Li, X. Q., Li, Z. C., Liu, B., Liu, F., Liu, H. M., Liu, J., Liu, J. P., Liu, R. G., Liu, Y., Liu, Z. X., Lou, X. C., Lowery, B., Lu, G. R., Lu, F., Lu, J. G., Luo, X. L., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Mo, X. H., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Park, H., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, H. Y., Shen, X. Y., Shi, F., Shi, H. Z., Song, X. F., Standifird, J., Suh, J. Y., Sun, H. S., Sun, L. F., Sun, Y. Z., Tang, S. Q., Toki, W., Tong, G. L., Varner, G. S., Wang, F., Wang, L., Wang, L. S., Wang, L. Z., Wang, P., Wang, P. L., Wang, S. M., Wang, Y. Y., Wang, Z. Y., Weaver, M., Wei, C. L., Wu, N., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, Y., Xie, Y. H., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, H. X., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yu, C. S., Yu, C. X., Yu, G. W., Yu, Y. H., Yu, Z. Q., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. W., Zhang, L., Zhang, L., Zhang, L. S., Zhang, P., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, B. Q., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhu, Z. A., Zhuang, B. A. 2001; 63 (3)
  • On smoothing methods for the P0 matrix linear complementarity problem SIAM J. Optimization Chen, X., Ye, Y. 2001; 11: 341-363
  • Blind Channel Equalization and Approximation Algorithms IEEE Trans. on Signal Processing Li, B. 2001; 49 (11): 2823-2831
  • A .699-approximation algorithm for Max-Bisection Mathematical Programming Ye, Y. 2001; 90: 101-111
  • Measurement of the mass and full width of the eta(c) meson PHYSICAL REVIEW D Bai, J. Z., Ban, Y., Bian, J. G., Blum, I., Chen, A. D., Chen, G. P., Chen, H. F., Chen, H. S., Chen, J., Chen, J. C., Chen, X. D., Chen, Y., Chen, Y. B., Cheng, B. S., Choi, J. B., Cui, X. Z., Ding, H. L., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Gao, C. S., Gao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Guo, Y. N., Guo, Z. J., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, K. L., He, M., Heng, Y. K., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Huang, G. S., Huang, X. P., Huang, Y. Z., Izen, J. M., Jiang, C. H., Jin, Y., Jones, B. D., Ju, X., Kang, J. S., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kim, H. J., Kim, S. K., Kim, T. Y., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, J. C., Li, P. Q., Li, W., Li, W. G., Li, X. H., Li, X. N., Li, X. Q., Li, Z. C., Liu, B., Liu, F., Liu, F., Liu, H. M., Liu, J., Liu, J. P., Liu, R. G., Liu, Y., Liu, Z. X., Lou, X. C., Lowery, B., Lu, G. R., Lu, F., Lu, J. G., Luo, X. L., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Mo, X. H., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Park, H., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, H. Y., Shen, X. Y., Shi, F., Shi, H. Z., Song, X. F., Standifird, J., Suh, J. Y., Sun, H. S., Sun, L. F., Sun, Y. Z., Tang, S. Q., Toki, W., Tong, G. L., Varner, G. S., Wang, F., Wang, L., Wang, L. S., Wang, L. Z., Wang, P., Wang, P. L., Wang, S. M., Wang, Y. Y., Wang, Z. Y., Weaver, M., Wei, C. L., Wu, N., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, Y., Xie, Y. H., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, H. X., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yu, C. S., Yu, C. X., Yu, G. W., Yu, Y. H., Yu, Z. Q., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. W., Zhang, L., Zhang, L., Zhang, L. S., Zhang, P., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Y. H., Zheng, Z. P., Zhou, B. Q., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhu, Z. A., Zhuang, B. A. 2000; 62 (7)
  • Direct measurement of B(D-omicron ->phi Chi(omicron)) and B(D+->phi Chi(+)) PHYSICAL REVIEW D Bai, J. Z., Ban, Y., Bian, J. G., Blum, I., Chen, G. P., Chen, H. F., Chen, J., Chen, J. C., Chen, Y., Chen, Y. B., Chen, Y. Q., Cheng, B. S., Cui, X. Z., Ding, H. L., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Gao, C. S., Gao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Gu, Y. F., Guo, Y. N., Guo, Z. J., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, K. L., He, M., Heng, Y. K., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Hu, X. Q., Huang, Y. Z., Huang, G. S., Izen, J. M., Jiang, C. H., Jin, Y., Jones, B. D., Ju, X., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, J. C., Li, P. Q., Li, R. B., Li, W., Li, W. G., Li, X. H., Li, X. N., Liu, H. M., Liu, J., Liu, R. G., Liu, Y., Lou, X. C., Lowery, B., Lu, F., Lu, J. G., Luo, X. L., Ma, E. C., Ma, J. M., Malchow, R., Mandelkern, M., Mao, H. S., Mao, Z. P., Meng, X. C., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Schmid, B., Schultz, J., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, H. Z., Song, X. F., Standifird, J., Stoker, D., Sun, F., Sun, H. S., Sun, Y., Sun, Y. Z., Tang, S. Q., Toki, W., Tong, G. L., Varner, G. S., Wang, F., Wang, L. S., Wang, L. Z., Wan, M., Wang, P., Wang, P. L., Wang, S. M., Wang, T. J., Wang, Y. Y., Weaver, M., Wei, C. L., Wu, N., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, P. P., Xie, Y., Xie, Y. H., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, H. X., Yang, J., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yu, C. S., Yu, C. X., Yu, G. W., Yu, Y. H., Yu, Z. Q., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. W., Zhang, L., Zhang, L. S., Zhang, P., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, B. Q., Zhou, G. P., Zhou, H. S., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhuang, B. A. 2000; 62 (5)
  • psi(2S) -> pi(+) pi(-) J/psi decay distributions PHYSICAL REVIEW D Bai, J. Z., Ban, Y., Bian, J. G., Blum, I., Chen, G. P., Chen, H. F., Chen, J., Chen, J. C., Chen, Y., Chen, Y. B., Chen, Y. Q., Cheng, B. S., Cui, X. Z., Ding, H. L., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Gao, C. S., Gao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Gu, Y. F., Guo, Z. J., Guo, Y. N., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, K. L., He, M., Heng, Y. K., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Hu, X. Q., Huang, G. S., Huang, Y. Z., Izen, J. M., Jiang, C. H., Jin, Y., Jones, B. D., Ju, X., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, J. C., Li, P. Q., Li, R. B., Li, W., Li, W. G., Li, X. H., Li, X. N., Liu, H. M., Liu, J., Liu, R. G., Liu, Y., Lou, X. C., Lowery, B., Lu, F., Lu, J. G., Luo, X. L., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, H. Z., Song, X. F., Standifird, J., Sun, F., Sun, H. S., Sun, Y., Sun, Y. Z., Tang, S. Q., Toki, W., Tong, G. L., Varner, G. S., Wang, F., Wang, L. S., Wang, L. Z., Wang, M., Wang, P., Wang, P. L., Wang, S. M., Wang, T. J., Wang, Y. Y., Weaver, M., Wei, C. L., Wu, N., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, P. P., Xie, Y., Xie, Y. H., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, H. X., Yang, J., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yu, C. S., Yu, C. X., Yu, G. W., Yu, Y. H., Yu, Z. Q., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. W., Zhang, L., Zhang, L. S., Zhang, P., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, B. Q., Zhou, G. P., Zhou, H. S., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhuang, B. A. 2000; 62 (3)
  • Measurement of the inclusive charm cross section at 4.03 GeV and 4.14 GeV PHYSICAL REVIEW D Bai, J. Z., Ban, Y., Bian, J. G., Blum, I., Chen, G. P., Chen, H. F., Chen, J., Chen, J. C., Chen, Y., Chen, Y. B., Chen, Y. Q., Cheng, B. S., Cui, X. Z., Ding, H. L., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Gao, C. S., Gao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Gu, Y. F., Guo, Y. N., Guo, Z. J., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, K. L., He, M., Heng, Y. K., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Hu, X. Q., Huang, Y. Z., Huang, G. S., Izen, J. M., Jiang, C. H., Jin, Y., Jones, B. D., Ju, X., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, J. C., Li, P. Q., Li, R. B., Li, W., Li, W. G., Li, X. H., Li, X. N., Liu, H. M., Liu, J., Liu, R. G., Liu, Y., Lou, X. C., Lowery, B., Lu, F., Lu, J. G., Luo, X. L., Ma, E. C., Ma, J. M., Malchow, R., Mandelkern, M., Mao, H. S., Mao, Z. P., Meng, X. C., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Schmid, B., Schultz, J., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, H. Z., Song, X. F., Standifird, J., Stoker, D., Sun, F., Sun, H. S., Sun, Y., Sun, Y. Z., Tang, S. Q., Toki, W., Tong, G. L., Varner, G. S., Wang, F., Wang, L. S., Wang, L. Z., Wang, M., Wang, P., Wang, P. L., Wang, S. M., Wang, T. J., Wang, Y. Y., Weaver, M., Wei, C. L., Wu, N., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, P. P., Xie, Y., Xie, Y. H., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, H. X., Yang, J., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yu, C. S., Yu, C. X., Yu, G. W., Yu, Y. H., Yu, Z. Q., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. W., Zhang, L., Zhang, L. S., Zhang, P., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zheng, L. S., Zheng, Z. P., Zhou, B. Q., Zhou, G. P., Zhou, H. S., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhuang, B. A. 2000; 62 (1)
  • Measurement of the total cross section for hadronic production by e(+)e(-) annihilation at energies between 2.6-5 GeV PHYSICAL REVIEW LETTERS Bai, J. Z., Ban, Y., Bian, J. G., Chen, G. P., Chen, H. F., Chen, J., Chen, J. C., Chen, Y., Chen, Y. B., Chen, Y. Q., Cheng, B. S., Cui, X. Z., Ding, H. L., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Gao, C. S., Gao, M. L., Gao, S. Q., Gu, J. H., Gu, S. D., Gu, W. X., Gu, Y. F., Guo, Y. N., Guo, Z. J., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, K. L., He, M., Heng, Y. K., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Hu, X. Q., Huang, G. S., Huang, Y. Z., Izen, J. M., Jiang, C. H., Jin, Y., Jones, B. D., Ju, X., Ke, Z. J., Kong, D., Lai, Y. F., Lang, P. F., Li, C. G., Li, D., Li, H. B., Li, J., Li, J. C., Li, P. Q., Li, R. B., Li, W., Li, W. G., Li, X. H., Li, X. N., Liu, H. M., Liu, J., Liu, R. G., Liu, Y., Lou, X. C., Lu, F., Lu, J. G., Luo, X. L., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Nie, J., Olsen, S. L., Paluselli, D., Pan, L. J., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, H. Z., Song, X. F., Sun, F., Sun, H. S., Sun, Y., Sun, Y. Z., Tang, S. Q., Toki, W., Tong, G. L., Varner, G. S., Wang, F., Wang, L. S., Wang, L. Z., Wang, M., Wang, P., Wang, P. L., Wang, S. M., Wang, T. J., Wang, Y. Y., Wei, C. L., Wu, N., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, P. P., Xie, Y., Xie, Y. H., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, H. X., Yang, J., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yu, C. S., Yu, C. X., Yu, G. W., Yu, Y. H., Yu, Z. Q., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. W., Zhang, L., Zhang, L. S., Zhang, P., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, B. Q., Zhou, G. P., Zhou, H. S., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhuang, B. A. 2000; 84 (4): 594-597
  • An efficient algorithm for minimizing a sum of P-norms SIAM J. Optimization Xue, G., Ye, Y. 2000; 10: 551-579
  • Convergence results of analytic center estimator Analytic center approach to bounded error parameter IEEE Transactions on Automatic Control Bai, E., Fu, M., Tempo, R., Ye, Y. 2000
  • Solving large-scale sparse semidefinite programs for combinatorial optimization SIAM J. Optimization Benson, S., Ye, Y., Zhang, X. 2000; 10: 443-461
  • Study of the hadronic decays of X-c states PHYSICAL REVIEW D Bai, J. Z., Ban, Y., Bian, J. G., Blum, I., Chen, G. P., Chen, H. F., Chen, J., Chen, J. C., Chen, Y., Chen, Y. B., Chen, Y. Q., Cheng, B. S., Cui, X. Z., Ding, H. L., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Gao, C. S., Gao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Gu, Y. F., Guo, Y. N., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, K. L., He, M., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Hu, X. Q., Huang, Y. Z., Izen, J. M., Jiang, C. H., Jin, Y., Jones, B. D., Ju, X., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, J. C., Li, P. Q., Li, R. B., Li, W., Li, W. G., Li, X. H., Li, X. N., Liu, H. M., Liu, J., Liu, R. G., Liu, Y., Lou, X. C., Lowery, B., Lu, F., Lu, J. G., Luo, X. L., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, H. Z., Song, X. F., Standifird, J., Sun, F., Sun, H. S., Sun, Y., Sun, Y. Z., Tang, S. Q., Toki, W., Tong, G. L., Varner, G. S., Wang, F., Wang, L. S., Wang, L. Z., Wang, M., Wang, P., Wang, P. L., Wang, S. M., Wang, T. J., Wang, Y. Y., Weaver, M., Wei, C. L., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, P. P., Xie, Y., Xie, Y. H., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, J., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yu, C. S., Yu, C. X., Yu, G. W., Yu, Y. H., Yu, Z. Q., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. W., Zhang, L. S., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, B. Q., Zhou, G. P., Zhou, H. S., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhuang, B. A. 1999; 60 (7)
  • Charmonium decays to axial-vector plus pseudoscalar mesons PHYSICAL REVIEW LETTERS Bai, J. Z., Ban, Y., Bian, J. G., Blum, I., Chen, G. P., Chen, H. F., Chen, J., Chen, J. C., Chen, Y., Chen, Y. B., Chen, Y. Q., Cheng, B. S., Cui, X. Z., Ding, H. L., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Gao, C. S., Gao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Gu, Y. F., Guo, Y. N., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, K. L., He, M., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Hu, X. Q., Huang, Y. Z., Izen, J. M., Jiang, C. H., Jin, Y., Jones, B. D., Ke, Z. J., Kelsey, M. K., Kim, B. K., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, P. Q., Li, R. B., Li, W., Li, W. G., Li, X. H., Li, X. N., Liu, H. M., Liu, J., Liu, R. G., Liu, Y., Lou, X. C., Lowery, B., Lu, F., Lu, J. G., Luo, X. L., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, H. Z., Song, X. F., Standifird, J., Sun, F., Sun, H. S., Sun, Y., Sun, Y. Z., Tang, S. Q., Toki, W., Tong, G. L., Varner, G. S., Wang, F., Wang, L. S., Wang, L. Z., Wang, M., Wang, P., Wang, P. L., Wang, S. M., Wang, T. J., Wang, Y. Y., Weaver, M., Wei, C. L., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, P. P., Xie, Y., Xie, Y. H., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, J., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yu, C. S., Yu, C. X., Yu, G. W., Yu, Y. H., Yu, Z. Q., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. W., Zhang, L. S., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, B. Q., Zhou, G. P., Zhou, H. S., Zhou, L., Zhu, K. J., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhuang, B. A. 1999; 83 (10): 1918-1921
  • Probabilistic Analysis of an Infeasible Primal--Dual Algorithm for Linear Programming Mathematics of Operations Research Anstreicher, K., Ji, J., Potra, F., Ye, Y. 1999; 24: 176-192
  • On a homogeneous algorithm for the monotone complementarity problem Mathematical Programming Andersen, E., Ye, Y. 1999; 84: 375-400
  • Bounded Error Parameter Estimation: A Sequential Analytic Center Approach IEEE Transactions on Automatic Control Bai, E., Ye, Y., Tempo, R. 1999; 6 (44): 1107-1117
  • On Homotopy-Smoothing Methods for Variational Inequalities SIAM J. Control & Optimization Chen, X., Ye, Y. 1999; 37: 589-616
  • Infeasible-start primal-dual methods and infeasibility detectors for nonlinear programming problems Mathematical Programming Nesterov, Yu., Todd, M., J., Ye, Y. 1999; 84: 227-267
  • Constrained Logarithmic Least Squares in Parameter Estimation IEEE Transactions on Automatic Control Bai, E., Ye, Y. 1999; 1 (44): 182-185
  • psi(2S) hadronic decays to vector-tensor final states PHYSICAL REVIEW LETTERS Bai, J. Z., Bian, J. G., Blum, I., Chai, Z. W., Chen, G. P., Chen, H. F., Chen, J., Chen, J. C., Chen, Y., Chen, Y. B., Chen, Y. Q., Cheng, B. S., Cui, X. Z., Ding, H. L., Ding, L. Y., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Feng, S., Gao, C. S., Gao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Gu, Y. F., Guo, Y. N., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, M., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Hu, X. Q., Huang, J. D., Huang, Y. Z., Izen, J. M., Jiang, C. H., Jin, Y., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, P. Q., Li, R. B., Li, W., Li, W. D., Li, W. G., Li, X. H., Li, X. N., Liu, H. M., Liu, J., Liu, J. H., Liu, R. G., Liu, Y., Lou, X. C., Lowery, B., Lu, F., Lu, J. G., Lu, J. Y., Lu, L. C., Luo, C. H., Ma, A. M., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, H. Z., Song, X. F., Standifird, J., Sun, F., Sun, H. S., Tang, S. Q., Toki, W., Tong, G. L., Wang, F., Wang, L. S., Wang, L. Z., Wang, M., Wang, M., Wang, P., Wang, P. L., Wang, S. M., Wang, T. J., Wang, Y. Y., Weaver, M., Wei, C. L., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, P. P., Xie, Y., Xie, Y. H., Xiong, W. J., Xu, C. C., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, J., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yi, K., Yu, C. S., Yu, C. X., Yu, Y. H., Yu, Z. Q., Yu, Z. T., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. L., Zhang, J. W., Zhang, L. S., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, G. P., Zhou, H. S., Zhou, L., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhuang, B. A. 1998; 81 (23): 5080-5084
  • Determination of J/psi leptonic branching fraction via psi(2S)->pi(+)pi(-)J/psi PHYSICAL REVIEW D Bai, J. Z., Bian, J. G., Blum, I., Chai, Z. W., Chen, G. P., Chen, H. F., Chen, J., Chen, J. C., Chen, Y., Chen, Y. B., Chen, Y. Q., Cheng, B. S., Cui, X. Z., Ding, H. L., Ding, L. Y., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Feng, S., Gao, C. S., Gao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Gu, Y. F., Guo, Y. N., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, M., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Hu, X. Q., Huang, J. D., Huang, Y. Z., Izen, J. M., Jiang, C. H., Jin, Y., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, P. Q., Li, R. B., Li, W., Li, W. D., Li, W. G., Li, X. H., Li, X. N., Liu, H. M., Liu, J., Liu, J. H., Liu, R. G., Liu, Y., Lou, X. C., Lowery, B., Lu, F., Lu, J. G., Lu, J. Y., Lu, L. C., Luo, C. H., Ma, A. M., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, H. Z., Song, X. F., Standifird, J., Sun, F., Sun, H. S., Tang, S. Q., Toki, W., Tong, G. L., Wang, F., Wang, L. S., Wang, L. Z., Wang, M., Wang, M., Wang, P., Wang, P. L., Wang, S. M., Wang, T. J., Wang, Y. Y., Weaver, M., Wei, C. L., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, P. P., Xie, Y., Xie, Y. H., Xiong, W. J., Xu, C. C., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, J., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yi, K., Yu, C. S., Yu, C. X., Yu, Y. H., Yu, Z. Q., Yu, Z. T., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. L., Zhang, J. W., Zhang, L. S., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, G. P., Zhou, H. S., Zhou, L., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhuang, B. A. 1998; 58 (9)
  • Branching fractions for psi(2S)->gamma eta ' and gamma eta PHYSICAL REVIEW D Bai, J. Z., Bian, J. G., Blum, I., Chai, Z. W., Chen, G. P., Chen, H. F., Chen, J., Chen, J. C., Chen, Y., Chen, Y. B., Chen, Y. Q., Cheng, B. S., Cui, X. Z., Ding, H. L., Ding, L. Y., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Feng, S., Gao, C. S., Gao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Gu, Y. F., Guo, Y. N., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, M., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Hu, X. Q., Huang, J. D., Huang, Y. Z., Izen, J. M., Jiang, C. H., Jin, Y., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, P. Q., Li, R. B., Li, W., Li, W. D., Li, W. G., Li, X. H., Li, X. N., Liu, H. M., Liu, J., Liu, J. H., Liu, R. G., Liu, Y., Lou, X. C., Lower, B., Lu, F., Lu, J. G., Lu, J. Y., Lu, L. C., Luo, C. H., Ma, A. M., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, H. Z., Song, X. F., Standifird, J., Sun, F., Sun, H. S., Tang, S. Q., Toki, W., Tong, G. L., Wang, F., Wang, L. S., Wang, L. Z., Wang, M., Wang, M., Wang, P., Wang, P. L., Wang, S. M., Wang, T. J., Wang, Y. Y., Weaver, M., Wei, C. L., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, P. P., Xie, Y., Xie, Y. H., Xiong, W. J., Xu, C. C., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, J., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yi, K., Yu, C. S., Yu, C. X., Yu, Y. H., Yu, Z. Q., Yu, Z. T., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, D., Zhang, H. L., Zhang, J., Zhang, J. L., Zhang, J. W., Zhang, L. S., Zhang, Q. J., Zhang, S. A., Zhang, X. Y., Zhang, Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, G. P., Zhou, H. S., Zhou, L., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhuang, B. A. 1998; 58 (9)
  • Study of the P-wave charmonium state chi(cJ) in psi/(2S) decays PHYSICAL REVIEW LETTERS Bai, J. Z., Bian, J. G., Blum, I., Chai, Z. W., Chen, G. P., Chen, H. F., Chen, J., Chen, J. C., Chen, Y., Chen, Y. B., Chen, Y. Q., Cheng, B. S., Cui, X. Z., Ding, H. L., Ding, L. Y., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Feng, S., Gao, C. S., Cao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Gu, Y. F., Guo, Y. N., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, M., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Hu, X. Q., Huang, J. D., Huang, Y. Z., Izen, J. M., Jiang, C. H., Jin, Y., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, P. Q., Li, R. B., Li, W., Li, W. D., Li, W. G., Li, X. H., Li, X. N., Liu, H. M., Liu, J., Liu, J. H., Liu, R. G., Liu, Y., Lou, X. C., Lowery, B., Lu, F., Lu, J. G., Lu, J. Y., Lu, L. C., Luo, C. H., Ma, A. M., Ma, E. C., Ma, J. M., Malchow, R., Mao, H. S., Mao, Z. P., Meng, X. C., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, H. Z., Song, X. F., Standifird, J., Sun, F., Sun, H. S., Tang, S. Q., Toki, W., Tong, G. L., Varner, G., Wang, F., Wang, L. S., Wang, L. Z., Wang, M., Wang, M., Wang, P., Wang, P. L., Wang, S. M., Wang, T. J., Wang, Y. Y., Weaver, M., Wei, C. L., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, P. P., Xie, Y., Xie, Y. H., Xiong, W. J., Xu, C. C., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, J., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yi, K., Yu, C. S., Yu, C. X., Yu, Y. H., Yu, Z. Q., Yu, Z. T., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. L., Zhang, J. W., Zhang, L. S., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zhao, Z. G., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, G. P., Zhou, H. S., Zhou, L., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhuang, B. A. 1998; 81 (15): 3091-3095
  • Search for psi(2S) production in e(+)e(-) annihilations at 4.03 GeV PHYSICAL REVIEW D Bai, J. Z., Bian, J. G., Blum, I., Chai, Z. W., Chen, G. P., Chen, H. F., Chen, J., Chen, J. C., Chen, Y., Chen, Y. B., Chen, Y. Q., Cheng, B. S., Cui, X. Z., Ding, H. L., Ding, L. Y., Dong, L. Y., Du, Z. Z., Dunwoodie, W., Feng, S., Gao, C. S., Gao, M. L., Gao, S. Q., Gratton, P., Gu, J. H., Gu, S. D., Gu, W. X., Gu, Y. F., Guo, Y. N., Han, S. W., Han, Y., Harris, F. A., He, J., He, J. T., He, M., Hitlin, D. G., Hu, G. Y., Hu, H. M., Hu, J. L., Hu, Q. H., Hu, T., Hu, X. Q., Huang, J. D., Huang, Y. Z., Izen, J. M., Jiang, C. H., Jin, Y., Ke, Z. J., Kelsey, M. H., Kim, B. K., Kong, D., Lai, Y. F., Lang, P. F., Lankford, A., Li, C. G., Li, D., Li, H. B., Li, J., Li, P. Q., Li, R. B., Li, W., Li, W. D., Li, W. G., Li, X. H., Li, X. N., Liu, H. M., Liu, J., Liu, J. H., Liu, R. G., Liu, Y., Lou, X. C., Lowery, B., Lu, F., Lu, J. G., Lu, J. Y., Lu, L. C., Luo, C. H., Ma, A. M., Ma, E. C., Ma, J. M., Malchow, R., Mandelkern, M., Mao, H. S., Mao, Z. P., Meng, X. C., Nie, J., Olsen, S. L., Oyang, J., Paluselli, D., Pan, L. J., Panetta, J., Porter, F., Qi, N. D., Qi, X. R., Qian, C. D., Qiu, J. F., Qu, Y. H., Que, Y. K., Rong, G., Schernau, M., Schmid, B., Schultz, J., Shao, Y. Y., Shen, B. W., Shen, D. L., Shen, H., Shen, X. Y., Sheng, H. Y., Shi, H. Z., Song, X. F., Standifird, J., Stoker, D., Sun, F., Sun, H. S., Tang, S. Q., Toki, W., Tong, G. L., Wang, F., Wang, L. S., Wang, L. Z., Wang, M., Wang, M., Wang, P., Wang, P. L., Wang, S. M., Wang, T. J., Wang, Y. Y., Weaver, M., Wei, C. L., Wu, Y. G., Xi, D. M., Xia, X. M., Xie, P. P., Xie, Y., Xie, Y. H., Xiong, W. J., Xu, C. C., Xu, G. F., Xue, S. T., Yan, J., Yan, W. G., Yang, C. M., Yang, C. Y., Yang, J., Yang, W., Yang, X. F., Ye, M. H., Ye, S. W., Ye, Y. X., Yi, K., Yu, C. S., Yu, C. X., Yu, Y. H., Yu, Z. Q., Yu, Z. T., Yuan, C. Z., Yuan, Y., Zhang, B. Y., Zhang, C. C., Zhang, D. H., Zhang, D. H., Zhang, H. L., Zhang, J., Zhang, J. L., Zhang, J. W., Zhang, L. S., Zhang, Q. J., Zhang, S. Q., Zhang, X. Y., Zhang, Y., Zhang, Y. Y., Zhao, D. X., Zhao, H. W., Zhao, J. W., Zhao, M., Zhao, W. R., Zheng, J. P., Zheng, L. S., Zheng, Z. P., Zhou, G. P., Zhou, H. S., Zhou, L., Zhu, Q. M., Zhu, Y. C., Zhu, Y. S., Zhuang, B. A. 1998; 57 (7): 3854-3859
  • A computational study of the homogeneous algorithm for large-scale convex optimization Computational Optimization and Applications Andersen, E., Ye, Y. 1998; 10: 243-269
  • On the complexity of approximating a KKT point of quadratic programming Mathematical Programming Ye, Y. 1998; 80: 195-212
  • Approximation algorithms for quadratic programming Journal of Combinatorial Optimization Fu, M., Luo, Z., Q., Ye, Y. 1998; 1 (2): 29-50
  • Approximate Farkas lemmas and stopping rules for iterative infeasible-point algorithms for linear programming Mathematical Programming Todd, M., J., Ye, Y. 1998; 81: 1-22
  • Noradrenergic activity differentially regulates the expression of rolipram-sensitive, high-affinity cyclic AMP phosphodiesterase (PDE4) in rat brain JOURNAL OF NEUROCHEMISTRY Ye, Y., Conti, M., Houslay, M. D., Farooqui, S. M., Chen, M., ODONNELL, J. M. 1997; 69 (6): 2397-2404

    Abstract

    In a previous study, it was observed that the activity of rolipram-sensitive, low-Km, cyclic AMP phosphodiesterase (PDE4) was decreased in vivo with diminished noradrenergic stimulation. The results of the present experiments indicated that the reduction in the activity may be associated with down-regulation of PDE4 protein. Immunoblot analysis using PDE4-specific, subfamily-nonspecific antibody (K116) revealed four major bands of PDE4 in rat cerebral cortex; those with apparent molecular masses of 109 and 102 kDa are variants of PDE4A. Diminished noradrenergic activity, produced by intracerebroventricular infusion of 6-hydroxydopamine (6-OHDA) or chronic subcutaneous infusion of propranolol, decreased the intensities of the protein bands for the 109- and 102-kDa PDE4A variants in rat cerebral cortex but not of the 98- or 91-kDa PDE4 forms. 6-OHDA-induced noradrenergic lesioning also decreased the content of 102-kDa PDE4A in hippocampus as labeled by PDE4A-specific antibody (C-PDE4A). Enhanced noradrenergic stimulation up-regulated PDE4 in cerebral cortex. This was indicated by the finding that repeated treatment with desipramine increased the intensity of the protein band for the 102-kDa PDE4 but not for the other variants of PDE4. These results suggest that PDE4 subtypes are differentially regulated at the level of expression, as evidenced by an apparent change in the amount of PDE4 protein, following changes in noradrenergic activity. These observations are consistent with the notion that PDE4s, especially the PDE4A variants with molecular masses of 109 and 102 kDa, play an important role in maintaining the homeostasis of the noradrenergic signal transduction system in the brain and may be involved in the mediation of antidepressant activity.

    View details for Web of Science ID A1997YG27500019

    View details for PubMedID 9375671

  • An infeasible interior-point algorithm for solving primal and dual geometric programs Mathematical Programming Kortanek, K., O., Xu, X., Ye, Y. 1997; 76: 155-182
  • Improved complexity using higher-order correctors for primal-dual Dikin affine scaling Mathematical Programming Jansen, B., Roos, C., Terlaky, T., Ye, Y. 1997; 76: 117-130
  • Complexity analysis of the analytic center cutting plane method that uses multiple cuts Mathematical Programming Ye, Y. 1997; 78: 85-104
  • On homogeneous and self-dual algorithm for LCP Mathematical Programming Ye, Y. 1997; 76: 211-222
  • Efficient algorithms for minimizing a sum of Euclidean norms with applications SIAM J. Optimization Xue, G., Ye, Y. 1997; 7: 1017-1036
  • A primal-dual interior-point method whose running time depends only on the constraint matrix Mathematical Programming Vavasis, S., Ye, Y. 1996; 74: 79-120
  • How partial knowledge helps to solve linear programs Journal of Complexity Ye, Y. 1996; 12: 480-491
  • Complexity analysis of an interior-point cutting plane method for convex feasibility problem SIAM J. Optimization Goffin, J., Luo, Z., Ye, Y. 1996; 6: 638-652
  • Combining interior-point and pivoting algorithms for linear programming Management Science Andersen, E., D., Ye, Y. 1996; 42: 1719-1731
  • A lower bound on the number of iterations of long-step and polynomial interior-point linear programming algorithms Annals of Operations Research Todd, M., Ye, Y. 1996; 62: 233-252
  • A asymptotical O(√nL) -iteration path-following linear programming algorithm that uses long steps SIAM J. Optimization Ye, Y. 1996; 6: 570-586
  • Interior-point methods for nonlinear complementarity problem Journal of Optimization Theory and Application Potra, F., Ye, Y. 1996; 68
  • Identifying an optimal basis in linear programming Annals of Operations Research Vavasis, S., Ye, Y. 1996; 62: 565-572
  • A simplified homogeneous and self-dual linear programming algorithm and its implementation Annals of Operations Research Xu, X., Hung, P., Ye, Y. 1996; 62: 151-172
  • A surface of analytic centers and infeasible-interior-point algorithms for linear programming Mathematics of Operations Research Mizuno, S., Todd, M., Ye, Y. 1995; 20: 135-162
  • On the von Neumann economic growth problem Mathematics Operations Research Ye, Y. 1995; 20: 617-633
  • Condition numbers for polyhedra with real number data Operations Research Letters Vavasis, S., Ye, Y. 1995; 17: 209-214
  • A generalized homogeneous and self-dual linear programming algorithm Operations Research Letters Xu, X., Ye, Y. 1995; 17
  • On the convergence of the iteration sequence in primal-dual interior-point methods Mathematical Programming Tapia, R., Zhang, Y., Ye, Y. 1995; 68: 141-154
  • The optimal choice of inputs under time of use pricing, fixed proportions technology and adjustment costs: an application to industrial firms Management Sciences Spector, Y., Tishler, A., Ye, Y. 1995; 41: 1679-1692
  • A convergent algorithm for quantile regression with smoothing splines Computational Statistics & Data Analysis Bosch, R., J., Ye, Y., Woodworth, G., G. 1995; 19: 613-630
  • Specially structured uncapacitated facility location problems Operations Research Jones, P., Lowe, T., Muller, G., Xu, N., Ye, Y., Zydiak, J. 1995; 43: 661-669
  • Combining binary search and Newton's method to compute real roots for a class of real functions Journal of Complexity Ye, Y. 1994; 10: 271-280
  • A complexity analysis for interior-point algorithms based on Karmarkar's potential functions SIAM J. on Optimization Ji, J., Ye, Y. 1994; 4: 512-520
  • Toward probabilistic analysis of interior-point algorithms for linear programming Mathematics of Operations Research Ye, Y. 1994; 19: 38-52
  • An $O(\sqrt{n}L)$-iteration homogeneous and self-dual linear programming algorithm Mathematics of Operations Research Ye, Y., Todd, M., Mizuno, S. 1994; 19: 53-67
  • A decomposition variant of the potential reduction algorithm for linear programming Management Science Kaliski, J., Ye, Y. 1993; 39: 757-776
  • Solutions of $P_0$-matrix linear complementarity problems SIAM J. on Matrix Anal. Appl. Pardalos, P., Ye, Y., Han, C., Kaliski, J. 1993; 14: 1048-1060
  • Near-boundary behavior of the primal-dual potential reduction algorithm for linear programming Mathematical Programming Ye, Y., Kortanek, K., Kaliski, J., Huang, S. 1993; 58: 243-255
  • Minimal adjustment costs, factor demands, and seasonal time-of-use electricity rates Resource and Energy Economics Tishler, A., Ye, Y. 1993; 15: 313-335
  • An extension of the potential reduction algorithm for solving LCP with priority goals Linear Algebra and its Applications Kaliski, J., Ye, Y. 1993; 193: 35-50
  • A quadratically convergent polynomial interior-point algorithm for solving entropy optimization problems SIAM J. on Optimization Potra, F., Ye, Y. 1993; 3: 843-860
  • On quadratic and $O(\sqrt{n}L)$ convergence of a predictor- corrector algorithm for LCP Mathematical Programming Ye, Y., Anstreicher, K. 1993; 62: 537-552
  • On finding an interior point on the optimal face of linear programs Mathematical Programming Mehrotra, S., Ye, Y. 1993; 62: 497-516
  • On adaptive-step primal-dual interior-point algorithms for linear programming Mathematics of Operations Research Mizuno, S., Todd, M., Ye, Y. 1993; 18: 964-981
  • A quadratically convergent $O(\sqrt{n}L)$-iteration algorithm for linear programming Mathematical Programming Ye, Y., G\"uler, O., Tapia, R., Zhang, Y. 1993; 59: 151-162
  • A fully polynomial-time approximation algorithm for computing a stationary point of the general LCP Mathematics of Operations Research Ye, Y. 1993; 18: 334-345
  • Convergence behavior of some interior-point algorithms Mathematical Programming G\"uler, O., Ye, Y. 1993; 60: 215-228
  • Extensions of the potential reduction algorithm for linear programming Journal of Optimization Theory and Applications Ye, Y. 1992; 193: 35-50
  • On affine scaling algorithms for nonconvex quadratic programming Mathematical Programming Ye, Y. 1992; 56: 285-300
  • Comparative analysis of affine scaling algorithms for linear programming Mathematical Programming Ye, Y. 1992; 52: 405-414
  • A potential reduction algorithm allowing column generation SIAM J. on Optimization Ye, Y. 1992; 2: 7-20
  • On the finite convergence of interior-point algorithms for linear programming Mathematical Programming Ye, Y. 1992; 57: 325-335
  • Implementation of interior-point algorithms for some entropy optimization problems Optimization Methods and Software Han, C., Pardalos, P., Ye, Y. 1992; 1: 71-80
  • An interior point potential reduction algorithm for the linear complementarity problem Mathematical Programming Kojima, M., Megiddo, N., Ye, Y. 1992; 54: 267-279
  • A class of LCPs solvable in polynomial time Linear Algebra and its Applications Ye, Y., Pardalos, P. 1991; 152: 3-17
  • On some efficient interior point methods for nonlinear convex programming Linear Algebra and its Applications Kortanek, K., Potra, F., Ye, Y. 1991; 152: 169-189
  • Interior-point algorithms for solving nonlinear optimization problems COAL Newsletter Han, C., Pardalos, P., Ye, Y. 1991; 19: 45-54
  • Convergence behavior of Karmarkar's projective algorithm for solving a simple linear program Operations Research Letters Kaliski, J., Ye, Y. 1991; 10: 389-393
  • An $O(n^3L)$ potential reduction algorithm for linear programming Mathematical Programming Ye, Y. 1991; 50: 239-258
  • Algorithms for the solution of quadratic knapsack problems Linear Algebra and its Applications Pardalos, P., Han, C., Ye, Y. 1991; 152: 69-91
  • A class of projective transformations for linear programming SIAM J. on Computing Ye, Y. 1990; 19: 457-466
  • Interior-point algorithms for global optimization Annals of Operations Research Ye, Y. 1990; 25: 59-74
  • Containing and shrinking ellipsoids in the path-following algorithm Mathematical Programming Ye, Y., Todd, M. 1990; 47: 1-9
  • A centered projective algorithm for linear programming Mathematics of Operations Research Todd, M., Ye, Y. 1990; 15: 508-529
  • A ``build-down'' scheme for linear programming Mathematical Programming Ye, Y. 1990; 46: 61-72
  • Recovering optimal basic variables in Karmarkar's polynomial algorithm for linear programming Mathematics of Operations Research Ye, Y. 1990; 15: 564-571
  • AN EXTENSION OF KARMARKAR PROJECTIVE ALGORITHM FOR CONVEX QUADRATIC-PROGRAMMING MATHEMATICAL PROGRAMMING Ye, Y. Y., Tse, E. 1989; 44 (2): 157-179
  • An extension of Karmarkar's projective algorithm for convex quadratic programming Mathematical Programming Ye, Y., Tse, E. 1989; 44: 157-179
  • Eliminating columns in the simplex method for linear programming Journal of Optimization Theory and Applications Ye, Y. 1989; 63: 103-111
  • RECOVERING OPTIMAL DUAL SOLUTIONS IN KARMARKARS POLYNOMIAL ALGORITHM FOR LINEAR-PROGRAMMING MATHEMATICAL PROGRAMMING Ye, Y. Y., Kojima, M. 1987; 39 (3): 305-317
  • KARMARKAR ALGORITHM AND THE ELLIPSOID METHOD OPERATIONS RESEARCH LETTERS Ye, Y. Y. 1987; 6 (4): 177-182
  • Recovering optimal dual solutions in Karmarkar's polynomial algorithm for linear programming Mathematical Programming Ye, Y., Kojima, M. 1987; 39: 305-317
  • A conclusion on `missing number' in ergodic exponents of $s\times s$ stochastic matrices Journal of Huazhong University of Science and Technology Ye, Y. 1983; 2
  • Directed graphs, linear Diophantine equations, and ergodic problems of stochastic matrices, English Edit. Journal of Huazhong University of Science and Technology Ye, Y. 1982; 2

Books and Book Chapters


  • A simplification to ``A Primal-Dual Interior Point Method Whose Running Time Depends Only on the Constraint Matrix'' High Performance Optimization, Applied Optimization 33 Vavasis, S., Ye, Y. edited by Zhang, et al, S. 2000: 233-243
  • Application of Semidefinite Programming to Circuit Partitioning Approximation and Complexity in Numerical Optimization Choi, C., Ye, Y. edited by Pardalos, P. Kluwer Academics Publishers. 2000: 130-136
  • Semidefinite Relaxations, Multivariate Normal Distributions, and Order Statistics Handbook of Combinatorial Optimization Bertsimas, D., Ye, Y. edited by Du, D., Z., Pardalos, P.M. Kluwer Academic Publishers. 1998: 1-19
  • On a homogeneous algorithm for a monotone complementarity problem with nonlinear equality constraints Complementarity and variational Problems: State of the art Andersen, E., Ye, Y. edited by Ferris, Michael, C., Pang, J. SIAM. 1997: 1-11
  • A genuine quadratically convergent polynomial interior point algorithm for linear programming Advances in Optimization and Approximation Ye, Y. edited by Du, D., Sun, J. Kluwer Academic Publishers, Boston. 1994: 1
  • On the complexity of a column generation algorithm for convex or quasiconvex feasibility problems Large Scale Optimization: State of the Art Goffin, J., Luo, Z., Ye, Y. edited by Hager, W., Hearn, D., Pardalos, P. Kluwer Academic Publishers, Boston. 1994: 182-191
  • Average performance of a self-dual interior-point algorithm for linear programming Complexity in Numerical Optimization Anstreicher, K., Ji, J., Potra, F., Ye, Y. edited by Pardalos, P. World Scientific, New Jersey. 1993: 1-15
  • Translation cuts for convex minimization Complexity in Numerical Optimization Burke, J., Goldstein, A., Tseng, P., Ye, Y. edited by Pardalos, P. World Scientific, New Jersey. 1993: 57-73
  • A further result on potential reduction algorithm for the P-matrix linear complementarity problem Advances in Optimization and Parallel Computing, Ye, Y. edited by Pardalos, P. North-Holland, NY. 1992: 1
  • A new complexity result on minimization of a quadratic function with a sphere constraint Recent Advances in Global Optimization Ye, Y. edited by Floudas, C., Pardalos, P. Princeton University Press, NJ. 1992: 1
  • Interior-point algorithms for quadratic programming Recent Developments in Mathematical Programming Ye, Y. edited by Kumar, S. Gordon \& Breach Scientific Publishers, Philadelphia. 1991: 1
  • Computational aspects of an interior point algorithm for quadratic programming problems with box constraints Large-Scale Numerical Optimization Han, C., Pardalos, P., Ye, Y. edited by Coleman, T., F., Li, Y. SIAM, Philadelphia. 1990: 1

Conference Proceedings