Yuanhao Qu
Ph.D. Student in Cancer Biology, admitted Autumn 2019
Education & Certifications
-
B.S., University of California, San Diego, Biochemistry and Cell Biology (2019)
All Publications
-
Systematic Discovery, In Vivo Delivery, and DNA Repair Mechanism of Single-Strand Annealing Protein for Precision Integration of Large DNA Sequences
CELL PRESS. 2024: 9-10
View details for Web of Science ID 001332783400018
-
Long sequence insertion via CRISPR/Cas gene-editing with transposase, recombinase, and integrase
CURRENT OPINION IN BIOMEDICAL ENGINEERING
2023; 28
View details for DOI 10.1016/j.cobme.2023.100491
View details for Web of Science ID 001062222100001
-
Integrative analysis of functional genomic screening and clinical data identifies a protective role for spironolactone in severe COVID-19.
Cell reports methods
2023; 3 (7): 100503
Abstract
We demonstrate that integrative analysis of CRISPR screening datasets enables network-based prioritization of prescription drugs modulating viral entry in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by developing a network-based approach called Rapid proXimity Guidance for Repurposing Investigational Drugs (RxGRID). We use our results to guide a propensity-score-matched, retrospective cohort study of 64,349 COVID-19 patients, showing that a top candidate drug, spironolactone, is associated with improved clinical prognosis, measured by intensive care unit (ICU) admission and mechanical ventilation rates. Finally, we show that spironolactone exerts a dose-dependent inhibitory effect on viral entry in human lung epithelial cells. Our RxGRID method presents a computational framework, implemented as an open-source software package, enabling genomics researchers to identify drugs likely to modulate a molecular phenotype of interest based on high-throughput screening data. Our results, derived from this method and supported by experimental and clinical analysis, add additional supporting evidence for a potential protective role of the potassium-sparing diuretic spironolactone in severe COVID-19.
View details for DOI 10.1016/j.crmeth.2023.100503
View details for PubMedID 37529368
-
Machine-learning-optimized Cas12a barcoding enables the recovery of single-cell lineages and transcriptional profiles.
Molecular cell
2022
Abstract
The development of CRISPR-based barcoding methods creates an exciting opportunity to understand cellular phylogenies. We present a compact, tunable, high-capacity Cas12a barcoding system called dual acting inverted site array (DAISY). We combined high-throughput screening and machine learning to predict and optimize the 60-bp DAISY barcode sequences. After optimization, top-performing barcodes had ∼10-fold increased capacity relative to the best random-screened designs and performed reliably across diverse cell types. DAISY barcode arrays generated ∼12 bits of entropy and ∼66,000 unique barcodes. Thus, DAISY barcodes-at a fraction of the size of Cas9 barcodes-achieved high-capacity barcoding. We coupled DAISY barcoding with single-cell RNA-seq to recover lineages and gene expression profiles from ∼47,000 human melanoma cells. A single DAISY barcode recovered up to ∼700 lineages from one parental cell. This analysis revealed heritable single-cell gene expression and potential epigenetic modulation of memory gene transcription. Overall, Cas12a DAISY barcoding is an efficient tool for investigating cell-state dynamics.
View details for DOI 10.1016/j.molcel.2022.06.001
View details for PubMedID 35752172
-
dCas9-based gene editing for cleavage-free genomic knock-in of long sequences.
Nature cell biology
2022
Abstract
Gene editing is a powerful tool for genome and cell engineering. Exemplified by CRISPR-Cas, gene editing could cause DNA damage and trigger DNA repair processes that are often error-prone. Such unwanted mutations and safety concerns can be exacerbated when altering long sequences. Here we couple microbial single-strand annealing proteins (SSAPs) with catalytically inactive dCas9 for gene editing. This cleavage-free gene editor, dCas9-SSAP, promotes the knock-in of long sequences in mammalian cells. The dCas9-SSAP editor has low on-target errors and minimal off-target effects, showing higher accuracy than canonical Cas9 methods. It is effective for inserting kilobase-scale sequences, with an efficiency of up to approximately 20% and robust performance across donor designs and cell types, including human stem cells. We show that dCas9-SSAP is less sensitive to inhibition of DNA repair enzymes than Cas9 references. We further performed truncation and aptamer engineering to minimize its size to fit into a single adeno-associated-virus vector for future application. Together, this tool opens opportunities towards safer long-sequence genome engineering.
View details for DOI 10.1038/s41556-021-00836-1
View details for PubMedID 35145221
-
CRISPR-Cas12a System With Synergistic Phage Recombination Proteins for Multiplex Precision Editing in Human Cells.
Frontiers in cell and developmental biology
2021; 9: 719705
Abstract
The development of CRISPR-based gene-editing technologies has brought an unprecedented revolution in the field of genome engineering. Cas12a, a member of the Class 2 Type V CRISPR-associated endonuclease family distinct from Cas9, has been repurposed and developed into versatile gene-editing tools with distinct PAM recognition sites and multiplexed gene targeting capability. However, with current CRISPR/Cas12a technologies, it remains a challenge to perform efficient and precise genome editing of long sequences in mammalian cells. To address this limitation, we utilized phage recombination enzymes and developed an efficient CRISPR/Cas12a tool for multiplexed precision editing in mammalian cells. Through protein engineering, we were able to recruit phage recombination proteins to Cas12a to enhance its homology-directed repair efficiencies. Our phage-recombination-assisted Cas12a system achieved up to 3-fold improvements for kilobase-scale knock-ins in human cells without compromising the specificity of the enzyme. The performance of this system compares favorably against Cas9 references, the commonly used enzyme for gene-editing tasks, with improved specificity. Additionally, we demonstrated multi-target editing with similar improved activities thanks to the RNA-processing activity of the Cas12a system. This compact, multi-target editing tool has the potential to assist in understanding multi-gene interactions. In particular, it paves the way for a gene therapy method for human diseases that complements existing tools and is suitable for polygenic disorders and diseases requiring long-sequence corrections.
View details for DOI 10.3389/fcell.2021.719705
View details for PubMedID 35774104
View details for PubMedCentralID PMC9237396
-
Cleavage-Free dCas9 Knock-In Gene-Editing Tool Leveraging RNA-Guided Targeting of Recombineering Proteins
CELL PRESS. 2021: 107
View details for Web of Science ID 000645188700204