All Publications


  • Circular RNA vaccine induces potent T cell responses. Proceedings of the National Academy of Sciences of the United States of America Amaya, L., Grigoryan, L., Li, Z., Lee, A., Wender, P. A., Pulendran, B., Chang, H. Y. 2023; 120 (20): e2302191120

    Abstract

    Circular RNAs (circRNAs) are a class of RNAs commonly found across eukaryotes and viruses, characterized by their resistance to exonuclease-mediated degradation. Their superior stability compared to linear RNAs, combined with previous work showing that engineered circRNAs serve as efficient protein translation templates, make circRNA a promising candidate for RNA medicine. Here, we systematically examine the adjuvant activity, route of administration, and antigen-specific immunity of circRNA vaccination in mice. Potent circRNA adjuvant activity is associated with RNA uptake and activation of myeloid cells in the draining lymph nodes and transient cytokine release. Immunization of mice with engineered circRNA encoding a protein antigen delivered by a charge-altering releasable transporter induced innate activation of dendritic cells, robust antigen-specific CD8 T cell responses in lymph nodes and tissues, and strong antitumor efficacy as a therapeutic cancer vaccine. These results highlight the potential utility of circRNA vaccines for stimulating potent innate and T cell responses in tissues.

    View details for DOI 10.1073/pnas.2302191120

    View details for PubMedID 37155869

  • Author Correction: Engineering circular RNA for enhanced protein production. Nature biotechnology Chen, R., Wang, S. K., Belk, J. A., Amaya, L., Li, Z., Cardenas, A., Abe, B. T., Chen, C., Wender, P. A., Chang, H. Y. 2022

    View details for DOI 10.1038/s41587-022-01472-2

    View details for PubMedID 35978134

  • Engineering circular RNA for enhanced protein production. Nature biotechnology Chen, R., Wang, S. K., Belk, J. A., Amaya, L., Li, Z., Cardenas, A., Abe, B. T., Chen, C., Wender, P. A., Chang, H. Y. 2022

    Abstract

    Circular RNAs (circRNAs) are stable and prevalent RNAs in eukaryotic cells that arise from back-splicing. Synthetic circRNAs and some endogenous circRNAs can encode proteins, raising the promise of circRNA as a platform for gene expression. In this study, we developed a systematic approach for rapid assembly and testing of features that affect protein production from synthetic circRNAs. To maximize circRNA translation, we optimized five elements: vector topology, 5' and 3' untranslated regions, internal ribosome entry sites and synthetic aptamers recruiting translation initiation machinery. Together, these design principles improve circRNA protein yields by several hundred-fold, provide increased translation over messenger RNA in vitro, provide more durable translation in vivo and are generalizable across multiple transgenes.

    View details for DOI 10.1038/s41587-022-01393-0

    View details for PubMedID 35851375