All Publications


  • The Use of Smart Devices for Mental Health Diagnosis and Care. Journal of clinical medicine Lautman, Z., Lev-Ari, S. 2022; 11 (18)

    Abstract

    In 2019, more than 970 million people worldwide suffered from a mental disorder, with anxiety and depressive disorders as the leading culprits [...].

    View details for DOI 10.3390/jcm11185359

    View details for PubMedID 36143004

    View details for PubMedCentralID PMC9501104

  • Intravital 3D visualization and segmentation of murine neural networks at micron resolution. Scientific reports Lautman, Z., Winetraub, Y., Blacher, E., Yu, C., Terem, I., Chibukhchyan, A., Marshel, J. H., de la Zerda, A. 2022; 12 (1): 13130

    Abstract

    Optical coherence tomography (OCT) allows label-free, micron-scale 3D imaging of biological tissues' fine structures with significant depth and large field-of-view. Here we introduce a novel OCT-based neuroimaging setting, accompanied by a feature segmentation algorithm, which enables rapid, accurate, and high-resolution in vivo imaging of 700 μm depth across the mouse cortex. Using a commercial OCT device, we demonstrate 3D reconstruction of microarchitectural elements through a cortical column. Our system is sensitive to structural and cellular changes at micron-scale resolution in vivo, such as those from injury or disease. Therefore, it can serve as a tool to visualize and quantify spatiotemporal brain elasticity patterns. This highly transformative and versatile platform allows accurate investigation of brain cellular architectural changes by quantifying features such as brain cell bodies' density, volume, and average distance to the nearest cell. Hence, it may assist in longitudinal studies of microstructural tissue alteration in aging, injury, or disease in a living rodent brain.

    View details for DOI 10.1038/s41598-022-14450-0

    View details for PubMedID 35907928