Stanford Advisors

All Publications

  • A Review of Imaging Methods to Assess Ultrasound-Mediated Ablation BMEF: A Science Partner Journal Fite, B. Z., Wang, J., Ghanouni, P., Ferrara, K. W. 2022

    View details for DOI 10.34133/2022/9758652

  • Optimization of microbubble-based DNA vaccination with low-frequency ultrasound for enhanced cancer immunotherapy. Advanced therapeutics Zhang, N., Foiret, J., Kheirolomoom, A., Liu, P., Feng, Y., Tumbale, S., Raie, M., Wu, B., Wang, J., Fite, B. Z., Dai, Z., Ferrara, K. W. 2021; 4 (9)


    Immunotherapy is an important cancer treatment strategy; nevertheless, the lack of robust immune cell infiltration in the tumor microenvironment remains a factor in limiting patient response rates. In vivo gene delivery protocols can amplify immune responses and sensitize tumors to immunotherapies, yet non-viral transfection methods often sacrifice transduction efficiency for improved safety tolerance. To improve transduction efficiency, we optimized a strategy employing low ultrasound transmission frequency-induced bubble oscillation to introduce plasmids into tumor cells. Differential centrifugation isolated size-specific microbubbles. The diameter of the small microbubble population was 1.27 ± 0.89 μm and that of larger population was 4.23 ± 2.27 μm. Upon in vitro insonation with the larger microbubble population, 29.7% of cancer cells were transfected with DNA plasmids, higher than that with smaller microbubbles (18.9%, P <0.05) or positive control treatments with a commercial transfection reagent (12%, P < 0.01). After 48 h, gene expression increased more than two-fold in tumors treated with large, as compared with small, microbubbles. Furthermore, the immune response, including tumor infiltration of CD8+ T cells and F4/80+ macrophages, was enhanced. We believe that this safe and efficacious method can improve preclinical procedures and outcomes for DNA vaccines in cancer immunotherapy in the future.

    View details for DOI 10.1002/adtp.202100033

    View details for PubMedID 34632048

    View details for PubMedCentralID PMC8494128

  • Synergies between therapeutic ultrasound, gene therapy and immunotherapy in cancer treatment. Advanced drug delivery reviews Zhang, N., Wang, J., Foiret, J., Dai, Z., Ferrara, K. W. 2021: 113906


    Due to the ease of use and excellent safety profile, ultrasound is a promising technique for both diagnosis and site-specific therapy. Ultrasound-based techniques have been developed to enhance the pharmacokinetics and efficacy of therapeutic agents in cancer treatment. In particular, transfection with exogenous nucleic acids has the potential to stimulate an immune response in the tumor microenvironment. Ultrasound-mediated gene transfection is a growing field, and recent work has incorporated this technique into cancer immunotherapy. Compared with other gene transfection methods, ultrasound-mediated gene transfection has a unique opportunity to augment the intracellular uptake of nucleic acids while safely and stably modulating the expression of immunostimulatory cytokines. The development and commercialization of therapeutic ultrasound systems further enhance the potential translation. In this Review, we introduce the underlying mechanisms and ongoing preclinical studies of ultrasound-based techniques in gene transfection for cancer immunotherapy. Furthermore, we expand on aspects of therapeutic ultrasound that impact gene therapy and immunotherapy, including tumor debulking, enhancing cytokines and chemokines and altering nanoparticle pharmacokinetics as these effects of ultrasound cannot be fully dissected from targeted gene therapy. We finally explore the outlook for this rapidly developing field.

    View details for DOI 10.1016/j.addr.2021.113906

    View details for PubMedID 34333075

  • Optimization of Microbubble-Based DNA Vaccination with Low-Frequency Ultrasound for Enhanced Cancer Immunotherapy ADVANCED THERAPEUTICS Zhang, N., Foiret, J., Kheirolomoom, A., Liu, P., Feng, Y., Tumbale, S., Raie, M., Wu, B., Wang, J., Fite, B. Z., Dai, Z., Ferrara, K. W. 2021