All Publications
-
PET Imaging of <i>In Situ</i>-Engineered CAR-T Cells in B Cell Lymphoma with <SUP>68</SUP>Ga-PSMA-11
CELL PRESS. 2024: 69-70
View details for Web of Science ID 001332783400130
-
PAM and FUS-assisted local AAV gene delivery into the brain of Alzheimer's disease murine models assessed by quantitative PET reporter gene
ELSEVIER SCIENCE INC. 2023: S141-S142
View details for Web of Science ID 001128725600183
-
Assessment of [<SUP>64</SUP>Cu]Cu-FAP-2286 in immunocompetent mice bearing pancreatic ductal adenocarcinoma (PDAC) tumors
ELSEVIER SCIENCE INC. 2023: S196
View details for Web of Science ID 001128725600255
-
PET imaging of focused-ultrasound enhanced delivery of AAVs into the murine brain.
Theranostics
2023; 13 (15): 5151-5169
Abstract
Rationale: Despite recent advances in the use of adeno-associated viruses (AAVs) as potential vehicles for genetic intervention of central and peripheral nervous system-associated disorders, gene therapy for the treatment of neuropathology in adults has not been approved to date. The currently FDA-approved AAV-vector based gene therapies rely on naturally occurring serotypes, such as AAV2 or AAV9, which display limited or no transport across the blood-brain barrier (BBB) if systemically administered. Recently developed engineered AAV variants have shown broad brain transduction and reduced off-target liver toxicity in non-human primates (NHPs). However, these vectors lack spatial selectivity for targeted gene delivery, a potentially critical limitation for delivering therapeutic doses in defined areas of the brain. The use of microbubbles, in conjunction with focused ultrasound (FUS), can enhance regional brain AAV transduction, but methods to assess transduction in vivo are needed. Methods: In a murine model, we combined positron emission tomography (PET) and optical imaging of reporter gene payloads to non-invasively assess the spatial distribution and transduction efficiency of systemically administered AAV9 after FUS and microbubble treatment. Capsid and reporter probe accumulation are reported as percent injected dose per cubic centimeter (%ID/cc) for in vivo PET quantification, whereas results for ex vivo assays are reported as percent injected dose per gram (%ID/g). Results: In a study spanning accumulation and transduction, mean AAV9 accumulation within the brain was 0.29 %ID/cc without FUS, whereas in the insonified region of interest of FUS-treated mice, the spatial mean and maximum reached ~2.3 %ID/cc and 4.3 %ID/cc, respectively. Transgene expression assessed in vivo by PET reporter gene imaging employing the pyruvate kinase M2 (PKM2)/[18F]DASA-10 reporter system increased up to 10-fold in the FUS-treated regions, as compared to mice receiving AAVs without FUS. Systemic injection of AAV9 packaging the EF1A-PKM2 transgene followed by FUS in one hemisphere resulted in 1) an average 102-fold increase in PKM2 mRNA concentration compared to mice treated with AAVs only and 2) a 12.5-fold increase in the insonified compared to the contralateral hemisphere of FUS-treated mice. Conclusion: Combining microbubbles with US-guided treatment facilitated a multi-hour BBB disruption and stable AAV transduction in targeted areas of the murine brain. This unique platform has the potential to provide insight and aid in the translation of AAV-based therapies for the treatment of neuropathologies.
View details for DOI 10.7150/thno.85549
View details for PubMedID 37908737
View details for PubMedCentralID PMC10614693
-
Combined near infrared photoacoustic imaging and ultrasound detects vulnerable atherosclerotic plaque.
Biomaterials
2023; 302: 122314
Abstract
Atherosclerosis is an inflammatory process resulting in the deposition of cholesterol and cellular debris, narrowing of the vessel lumen and clot formation. Characterization of the morphology and vulnerability of the lesion is essential for effective clinical management. Here, near-infrared auto-photoacoustic (NIRAPA) imaging is shown to detect plaque components and, when combined with ultrasound imaging, to differentiate stable and vulnerable plaque. In an ex vivo study of photoacoustic imaging of excised plaque from 25 patients, 88.2% sensitivity and 71.4% specificity were achieved using a clinically-relevant protocol. In order to determine the origin of the NIRAPA signal, immunohistochemistry, spatial transcriptomics and spatial proteomics were co-registered with imaging and applied to adjacent plaque sections. The highest NIRAPA signal was spatially correlated with bilirubin and associated blood-based residue and with the cytoplasmic contents of inflammatory macrophages bearing CD74, HLA-DR, CD14 and CD163 markers. In summary, we establish the potential to apply the NIRAPA-ultrasound imaging combination to detect vulnerable carotid plaque and a methodology for fusing molecular imaging with spatial transcriptomic and proteomic methods.
View details for DOI 10.1016/j.biomaterials.2023.122314
View details for PubMedID 37776766
-
Multiomic analysis for optimization of combined focal and immunotherapy protocols in murine pancreatic cancer.
Theranostics
2022; 12 (18): 7884-7902
Abstract
Background: Although combination immunotherapies incorporating local and systemic components have shown promising results in treating solid tumors, varied tumor microenvironments (TMEs) can impact immunotherapeutic efficacy. Method: We designed and evaluated treatment strategies for breast and pancreatic cancer combining magnetic resonance-guided focused ultrasound (MRgFUS) ablation and antibody therapies. With a combination of single-cell sequencing, spectral flow cytometry, and histological analyses, we profiled an immune-suppressed KPC (Kras+/LSL-G12D; Trp53+/LSL-R172H; Pdx1-Cre) pancreatic adenocarcinoma (MT4) model and a dense epithelial neu deletion (NDL) HER2+ mammary adenocarcinoma model with a greater fraction of lymphocytes, natural killer cells and activated dendritic cells. We then performed gene ontology analysis, spectral and digital cytometry to assess the immune response to combination immunotherapies and correlation with survival studies. Result: Based on gene ontology analysis, adding ablation to immunotherapy enriched immune cell migration pathways in the pancreatic cancer model and extensively enriched wound healing pathways in the breast cancer model. With CIBERSORTx digital cytometry, aCD40 + aPD-1 immunotherapy combinations enhanced dendritic cell activation in both models. In the MT4 TME, adding the combination of aCD40 antibody and checkpoint inhibitors (aPD-1 and aCTLA-4) with ablation was synergistic, increasing activated natural killer cells and T cells in distant tumors. Furthermore, ablation with immunotherapy upregulated critical Ly6c myeloid remodeling phenotypes that enhance T-cell effector function and increased granzyme and protease encoding genes by as much as 100-fold. Ablation combined with immunotherapy then extended survival in the MT4 model to a greater extent than immunotherapy alone. Conclusion: In summary, TME profiling informed a successful multicomponent treatment protocol incorporating ablation and facilitated differentiation of TMEs in which ablation is most effective.
View details for DOI 10.7150/thno.73218
View details for PubMedID 36451859
View details for PubMedCentralID PMC9706583
-
Multimodal imaging of capsid and cargo reveals differential brain targeting and liver detargeting of systemically-administered AAVs.
Biomaterials
2022: 121701
Abstract
The development of gene delivery vehicles with high organ specificity when administered systemically is a critical goal for gene therapy. We combine optical and positron emission tomography (PET) imaging of 1) reporter genes and 2) capsid tags to assess the temporal and spatial distribution and transduction of adeno-associated viruses (AAVs). AAV9 and two engineered AAV vectors (PHP.eB and CAP-B10) that are noteworthy for maximizing blood-brain barrier transport were compared. CAP-B10 shares a modification in the 588 loop with PHP.eB, but also has a modification in the 455 loop, added with the goal of reducing off-target transduction. PET and optical imaging revealed that the additional modifications retained brain receptor affinity. In the liver, the accumulation of AAV9 and the engineered AAV capsids was similar (15% of the injected dose per cc and not significantly different between capsids at 21h). However, the engineered capsids were primarily internalized by Kupffer cells rather than hepatocytes, and liver transduction was greatly reduced. PET reporter gene imaging after engineered AAV systemic injection provided a non-invasive method to monitor AAV-mediated protein expression over time. Through comparison with capsid tagging, differences between brain localization and transduction were revealed. In summary, AAV capsids bearing imaging tags and reporter gene payloads create a unique and powerful platform to assay the pharmacokinetics, cellular specificity and protein expression kinetics of AAV vectors in vivo, a key enabler for the field of gene therapy.
View details for DOI 10.1016/j.biomaterials.2022.121701
View details for PubMedID 35985893
-
TME subtype impacts response to combined thermal ablation and immunotherapy.
AMER ASSOC CANCER RESEARCH. 2022
View details for Web of Science ID 000892509501163
-
TME subtype impacts response to combined thermal ablation and immunotherapy
AMER ASSOC CANCER RESEARCH. 2022
View details for Web of Science ID 000892509503226
-
A Review of Imaging Methods to Assess Ultrasound-Mediated Ablation
BMEF: A Science Partner Journal
2022
View details for DOI 10.34133/2022/9758652
-
Optimization of microbubble-based DNA vaccination with low-frequency ultrasound for enhanced cancer immunotherapy.
Advanced therapeutics
2021; 4 (9)
Abstract
Immunotherapy is an important cancer treatment strategy; nevertheless, the lack of robust immune cell infiltration in the tumor microenvironment remains a factor in limiting patient response rates. In vivo gene delivery protocols can amplify immune responses and sensitize tumors to immunotherapies, yet non-viral transfection methods often sacrifice transduction efficiency for improved safety tolerance. To improve transduction efficiency, we optimized a strategy employing low ultrasound transmission frequency-induced bubble oscillation to introduce plasmids into tumor cells. Differential centrifugation isolated size-specific microbubbles. The diameter of the small microbubble population was 1.27 ± 0.89 μm and that of larger population was 4.23 ± 2.27 μm. Upon in vitro insonation with the larger microbubble population, 29.7% of cancer cells were transfected with DNA plasmids, higher than that with smaller microbubbles (18.9%, P <0.05) or positive control treatments with a commercial transfection reagent (12%, P < 0.01). After 48 h, gene expression increased more than two-fold in tumors treated with large, as compared with small, microbubbles. Furthermore, the immune response, including tumor infiltration of CD8+ T cells and F4/80+ macrophages, was enhanced. We believe that this safe and efficacious method can improve preclinical procedures and outcomes for DNA vaccines in cancer immunotherapy in the future.
View details for DOI 10.1002/adtp.202100033
View details for PubMedID 34632048
View details for PubMedCentralID PMC8494128
-
Synergies between therapeutic ultrasound, gene therapy and immunotherapy in cancer treatment.
Advanced drug delivery reviews
2021: 113906
Abstract
Due to the ease of use and excellent safety profile, ultrasound is a promising technique for both diagnosis and site-specific therapy. Ultrasound-based techniques have been developed to enhance the pharmacokinetics and efficacy of therapeutic agents in cancer treatment. In particular, transfection with exogenous nucleic acids has the potential to stimulate an immune response in the tumor microenvironment. Ultrasound-mediated gene transfection is a growing field, and recent work has incorporated this technique into cancer immunotherapy. Compared with other gene transfection methods, ultrasound-mediated gene transfection has a unique opportunity to augment the intracellular uptake of nucleic acids while safely and stably modulating the expression of immunostimulatory cytokines. The development and commercialization of therapeutic ultrasound systems further enhance the potential translation. In this Review, we introduce the underlying mechanisms and ongoing preclinical studies of ultrasound-based techniques in gene transfection for cancer immunotherapy. Furthermore, we expand on aspects of therapeutic ultrasound that impact gene therapy and immunotherapy, including tumor debulking, enhancing cytokines and chemokines and altering nanoparticle pharmacokinetics as these effects of ultrasound cannot be fully dissected from targeted gene therapy. We finally explore the outlook for this rapidly developing field.
View details for DOI 10.1016/j.addr.2021.113906
View details for PubMedID 34333075
-
Optimization of Microbubble-Based DNA Vaccination with Low-Frequency Ultrasound for Enhanced Cancer Immunotherapy
ADVANCED THERAPEUTICS
2021
View details for DOI 10.1002/adtp.202100033
View details for Web of Science ID 000657667500001
-
In situ T-cell transfection by anti-CD3-conjugated lipid nanoparticles leads to T-cell activation, migration, and phenotypic shift.
Biomaterials
2021; 281: 121339
Abstract
Ex vivo programming of T cells can be efficacious but is complex and expensive; therefore, the development of methods to transfect T cells in situ is important. We developed and optimized anti-CD3-targeted lipid nanoparticles (aCD3-LNPs) to deliver tightly packed, reporter gene mRNA specifically to T cells. In vitro, targeted LNPs efficiently delivered mCherry mRNA to Jurkat T cells, and T-cell activation and depletion were associated with aCD3 antibody coating on the surface of LNPs. aCD3-LNPs, but not non-targeted LNPs, accumulated within the spleen following systemic injection, with mCherry and Fluc signals visible within 30 min after injection. At 24 h after aCD3-LNP injection, 2-4% of all splenic T cells and 2-7% of all circulating T cells expressed mCherry, and this was dependent on aCD3 coating density. Targeting and transfection were accompanied by systemic CD25+, OX40+, and CD69+ T-cell activation with temporary CD3e ligand loss and depletion of splenic and circulating subsets. Migration of splenic CD8a+ T cells from the white-pulp to red-pulp, and differentiation from naïve to memory and effector phenotypes, followed upon aCD3-LNP delivery. Additionally, aCD3-LNP injection stimulated the secretion of myeloid-derived chemokines and T-helper cytokines into plasma. Lastly, we administered aCD3-LNPs to tumor bearing mice and found that transfected T cells localized within tumors and tumor-draining lymph nodes following immunotherapy treatment. In summary, we show that CD3-targeted transfection is feasible, yet associated with complex immunological consequences that must be further studied for potential therapeutic applications.
View details for DOI 10.1016/j.biomaterials.2021.121339
View details for PubMedID 35078042