All Publications

  • Molecular layer deposition of an Al-based hybrid resist for electron-beam and EUV lithography Ravi, A., Shi, J., Lewis, J., Bent, S. F., Guerrero, D., Amblard, G. R. SPIE-INT SOC OPTICAL ENGINEERING. 2023

    View details for DOI 10.1117/12.2657636

    View details for Web of Science ID 001022961000031

  • Molecular Layer Deposition of a Hafnium-Based Hybrid Thin Film as an Electron Beam Resist. ACS applied materials & interfaces Shi, J., Ravi, A., Richey, N. E., Gong, H., Bent, S. F. 2022


    The development of new resist materials is vital to fabrication techniques for next-generation microelectronics. Inorganic resists are promising candidates because they have higher etch resistance, are more impervious to pattern collapse, and are more absorbing of extreme ultraviolet (EUV) radiation than organic resists. However, there is limited understanding about how they behave under irradiation. In this work, a Hf-based hybrid thin film resist, known as "hafnicone", is deposited from the vapor-phase via molecular layer deposition (MLD), and its electron-beam and deep-ultraviolet (DUV)-induced patterning mechanism is explored. The hafnicone thin films are deposited at 100 °C by using the Hf precursor tetrakis(dimethylamido)hafnium(IV) and the organic precursor ethylene glycol. E-beam lithography, scanning electron microscopy, and profilometry are used to investigate the resist performance of hafnicone. With 3 M HCl as the developer, hafnicone behaves as a negative tone resist which exhibits a sensitivity of 400 muC/cm2 and the ability to resolve 50 nm line widths. The resist is characterized via X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) to investigate the patterning mechanism, which is described in the context of classical nucleation theory. This study of hafnicone hybrid MLD demonstrates the ability for the bottom-up vapor deposition of inorganic resists to be utilized in advanced e-beam and DUV lithographic techniques.

    View details for DOI 10.1021/acsami.2c04092

    View details for PubMedID 35653232