Honors & Awards


  • MCHRI Postdoctoral Support, MCHRI (Stanford Maternal & Child Health Research Institute) (09/01/2022 - Present)
  • T32 Postdoctoral Trainee, NIH NIDDK; Stanford School of Medicine, Department of Pediatrics, Division of Hematology/Oncology (02/01/2021 - 01/31/2023)

Professional Education


  • Master of Health and Science, Quinnipiac University (2014)
  • Doctor of Philosophy, University of California Merced (2020)
  • Bachelor of Science, University of California Los Angeles (2009)
  • Doctor of Philosophy (PhD), University of California, Merced, Immunoparasitology (2020)
  • Master of Health Science (MHS), Quinnipiac University, Biomedical Sciences (2014)
  • Bachelor of Science (BS), University of California, Los Angeles, Biochemistry (2009)

Stanford Advisors


Lab Affiliations


All Publications


  • Plasmodium falciparum exploits CD44 as a co-receptor for erythrocyte invasion. Blood Baro, B., Kim, C. Y., Lin, C., Kongsomboonvech, A. K., Tetard, M., Peterson, N. A., Salinas, N. D., Tolia, N. H., Egan, E. S. 2023

    Abstract

    The malaria parasite Plasmodium falciparum invades and replicates asexually within human erythrocytes. CD44 expressed on erythrocytes was previously identified as an important host factor for P. falciparum infection through a forward genetic screen, but little is known about its regulation or function in these cells, nor how it may be utilized by the parasite. We found that CD44 can be efficiently deleted from primary human hematopoietic stem cells using CRISPR/Cas9 genome editing, and that the efficiency of ex-vivo erythropoiesis to enucleated cultured red blood cells (cRBCs) is not impacted by lack of CD44. However, the rate of P. falciparum invasion was reduced in CD44-null cRBCs relative to isogenic wild-type (WT) control cells, validating CD44 as an important host factor for this parasite. We identified two P. falciparum invasion ligands as binding partners for CD44, Erythrocyte Binding Antigen-175 (EBA-175) and EBA-140, and demonstrated that their ability to bind to human erythrocytes relies primarily on their canonical receptors- glycophorin A and glycophorin C, respectively. We further show that EBA-175 induces phosphorylation of erythrocyte cytoskeletal proteins in a CD44-dependent manner. Our findings support a model where P. falciparum exploits CD44 as a co-receptor during invasion of human erythrocytes, stimulating CD44-dependent phosphorylation of host cytoskeletal proteins that alter host cell deformability and facilitate parasite entry.

    View details for DOI 10.1182/blood.2023020831

    View details for PubMedID 37832027

  • Variation in CD8 T cell IFNγ differentiation to strains of Toxoplasma gondii is characterized by small effect QTLs with contribution from ROP16 Frontiers in Cellular and Infection Microbiology Kongsomboonvech, A. K., García-López, L., Njume, F., Rodriguez, F., Souza, S. P., Rosenberg, A., Jensen, K. D. 2023: 1130965

    Abstract

    Toxoplasma gondii induces a strong CD8 T cell response characterized by the secretion of IFNγ that promotes host survival during infection. The initiation of CD8 T cell IFNγ responses in vitro differs widely between clonal lineage strains of T. gondii, in which type I strains are low inducers, while types II and III strains are high inducers. We hypothesized this phenotype is due to a polymorphic "Regulator Of CD8 T cell Response" (ROCTR).Therefore, we screened F1 progeny from genetic crosses between the clonal lineage strains to identify ROCTR. Naïve antigen-specific CD8 T cells (T57) isolated from transnuclear mice, which are specific for the endogenous and vacuolar TGD057 antigen, were measured for their ability to become activated, transcribe Ifng and produce IFNγ in response to T. gondii infected macrophages.Genetic mapping returned four non-interacting quantitative trait loci (QTL) with small effect on T. gondii chromosomes (chr) VIIb-VIII, X and XII. These loci encompass multiple gene candidates highlighted by ROP16 (chrVIIb-VIII), GRA35 (chrX), TgNSM (chrX), and a pair of uncharacterized NTPases (chrXII), whose locus we report to be significantly truncated in the type I RH background. Although none of the chromosome X and XII candidates bore evidence for regulating CD8 T cell IFNγ responses, type I variants of ROP16 lowered Ifng transcription early after T cell activation. During our search for ROCTR, we also noted the parasitophorous vacuole membrane (PVM) targeting factor for dense granules (GRAs), GRA43, repressed the response suggesting PVM-associated GRAs are important for CD8 T cell activation. Furthermore, RIPK3 expression in macrophages was an absolute requirement for CD8 T cell IFNγ differentiation implicating the necroptosis pathway in T cell immunity to T. gondii.Collectively, our data suggest that while CD8 T cell IFNγ production to T. gondii strains vary dramatically, it is not controlled by a single polymorphism with strong effect. However, early in the differentiation process, polymorphisms in ROP16 can regulate commitment of responding CD8 T cells to IFNγ production which may have bearing on immunity to T. gondii.

    View details for DOI 10.3389/fcimb.2023.1130965

    View details for PubMedCentralID PMC10242045

  • Plasmodium falciparum exploits CD44 as a co-receptor for erythrocyte invasion. bioRxiv : the preprint server for biology Baro-Sastre, B., Kim, C. Y., Lin, C., Kongsomboonvech, A. K., Tetard, M., Salinas, N. D., Tolia, N. H., Egan, E. S. 2023

    Abstract

    The malaria parasite Plasmodium falciparum invades and replicates asexually within human erythrocytes. CD44 expressed on erythrocytes was previously identified as an important host factor for P. falciparum infection through a forward genetic screen, but little is known about its regulation or function in these cells, nor how it may be utilized by the parasite. We found that CD44 can be efficiently deleted from primary human hematopoietic stem cells using CRISPR/Cas9 genome editing, and that the efficiency of ex-vivo erythropoiesis to enucleated cultured red blood cells (cRBCs) is not impacted by lack of CD44. However, the rate of P. falciparum invasion was substantially reduced in CD44-null cRBCs relative to isogenic wild-type (WT) control cells, validating CD44 as an important host factor for this parasite. We identified two P. falciparum invasion ligands as binding partners for CD44, Erythrocyte Binding Antigen-175 (EBA-175) and EBA-140, and demonstrated that their ability to bind to human erythrocytes relies primarily on their canonical receptors-glycophorin A and glycophorin C, respectively. We further show that EBA-175 induces phosphorylation of erythrocyte cytoskeletal proteins in a CD44-dependent manner. Our findings support a model where P. falciparum exploits CD44 as a co-receptor during invasion of human erythrocytes, stimulating CD44-dependent phosphorylation of host cytoskeletal proteins that alter host cell deformability and facilitate parasite entry.

    View details for DOI 10.1101/2023.04.12.536503

    View details for PubMedID 37090581

  • Naive CD8 T cell IFN gamma responses to a vacuolar antigen are regulated by an inflammasome-independent NLRP3 pathway andToxoplasma gondiiROP5 PLOS PATHOGENS Kongsomboonvech, A. K., Rodriguez, F., Diep, A. L., Justice, B. M., Castallanos, B. E., Camejo, A., Mukhopadhyay, D., Taylor, G. A., Yamamoto, M., Saeij, J. J., Reese, M. L., Jensen, K. C. 2020; 16 (8): e1008327

    Abstract

    Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite's protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including 'avirulent' ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen.

    View details for DOI 10.1371/journal.ppat.1008327

    View details for Web of Science ID 000566549000005

    View details for PubMedID 32853276

    View details for PubMedCentralID PMC7480859