Annika Mari Kristin Enejder
Physical Science Research Scientist
T. H. Geballe Laboratory for Advanced Materials
Academic Appointments
-
Physical Science Research Scientist, T. H. Geballe Laboratory for Advanced Materials
Honors & Awards
-
"Women in Optics" - One of 15 leading female principal investigators in Optics worldwide, The International Society for Optics and Photonics - SPIE (2011)
-
"Promising young scientists" at the Nobel festivities, Science school for young scientists/Nobel committee (December 1988)
Boards, Advisory Committees, Professional Organizations
-
Chair, Applications of CARS microscopy, Photonics West, SPIE (2011 - 2014)
-
Program Committee member, Photonic Applications in Biology and Medicine, The Conference on Lasers and Electro-Optics, CLEO (2015 - 2016)
-
Chair/Coordinator, Innovative Training Network in Nonlinear Microscopy, The European Research Council (2013 - 2017)
-
Chair, The European network for CARS microscopy “microCARS” (2006 - 2011)
-
Member of the Review Board, Applied Physics, The Swedish Research Council (2004 - 2006)
Professional Education
-
PhD, Lund University, Physics (1997)
-
M.Sc., Lund University, Engineering Physics (1992)
Current Research and Scholarly Interests
“A picture is worth a thousand words”; The mission of my research is to contribute with a visual understanding for how macromolecules assemble and form functional structures in living cells/organoids/tissues and innovative biomaterials by probing inherent molecular/electronic vibrations using nonlinear laser excitation in a microscope: Coherent Anti-Stokes Raman Scattering (CARS), Stimulated Raman Scattering (SRS), Second/Third Harmonic Generation (SHG/THG), and multiphoton fluorescence emission. With these emerging microscopy techniques, no artificial labelling or sample preparation are needed, hence, macromolecular assemblies and kinetics can be visualized under natural conditions and amounts can be given in quantitative numbers at sub-micron resolution and for extended periods of time at sub-second resolution.
Beside technical development and investigations of new approaches of nonlinear microscopy, my research interest is to use them to explore disease- and age-related changes in the extracellular environment and the cellular lipid metabolism, e.g. in different cancers, liver diseases and in the aging brain. In collaboration with experts on the different topics, I investigate cells grown in 3D tissue-mimicking matrices, living organoids, and tissues donated from patients. Based on the mechanisms observed, we test new drugs, normalizing the extracellular environment and cell metabolism. By monitoring specific vibrations of the drug molecules, their distributions and cell responses can be investigated at cellular level versus time.
Stanford Advisees
-
Doctoral Dissertation Reader (NonAC)
Chris Long -
Postdoctoral Research Mentor
Patrik Johansson
All Publications
-
APOE4/4 is linked to damaging lipid droplets in Alzheimer's diseasemicroglia.
Nature
2024
Abstract
Several genetic risk factors for Alzheimer's disease implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells1. However, the relationship between lipid metabolism in glia and Alzheimer's disease pathology remains poorly understood. Through single-nucleus RNA sequencing of brain tissue in Alzheimer's disease, we have identified a microglial state defined by the expression of the lipid droplet-associated enzyme ACSL1 with ACSL1-positive microglia being most abundant in patients with Alzheimer's disease having the APOE4/4 genotype. In human induced pluripotent stem cell-derived microglia, fibrillar Abeta induces ACSL1 expression, triglyceride synthesis and lipid droplet accumulation in an APOE-dependent manner. Additionally, conditioned media from lipid droplet-containing microglia lead to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for Alzheimer's disease with microglial lipid droplet accumulation and neurotoxic microglia-derived factors, potentially providing therapeutic strategies for Alzheimer's disease.
View details for DOI 10.1038/s41586-024-07185-7
View details for PubMedID 38480892
-
Bacterial outer membrane vesicles bound to bacteriophages modulate neutrophil responses to bacterial infection.
Frontiers in cellular and infection microbiology
2023; 13: 1250339
Abstract
Pseudomonas aeruginosa is a major human pathogen, particularly effective at colonizing the airways of patients with cystic fibrosis. Bacteriophages are highly abundant at infection sites, but their impact on mammalian immunity remains unclear. We previously showed that Pf4, a temperate filamentous bacteriophage produced by P. aeruginosa, modifies the innate immune response to P. aeruginosa infections via TLR3 signaling, but the underlying mechanisms remained unclear. Notably, Pf4 is a single-stranded DNA and lysogenic phage, and its production does not typically result in lysis of its bacterial host. We identified previously that internalization of Pf4 by human or murine immune cells triggers maladaptive viral pattern recognition receptors and resulted in bacterial persistence based on the presence of phage RNA. We report now that Pf4 phage dampens inflammatory responses to bacterial endotoxin and that this is mediated in part via bacterial vesicles attached to phage particles. Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria and play a key role in host pathogen interaction. Recently, evidence has emerged that OMVs differentially package small RNAs. In this study, we show that Pf4 are decorated with OMVs that remain affixed to Pf4 despite of purification steps. These phages are endocytosed by human cells and delivered to endosomal vesicles. We demonstrate that short RNAs within the OMVs form hairpin structures that trigger TLR3-dependent type I interferon production and antagonize production of antibacterial cytokines and chemokines. In particular, Pf4 phages inhibit CXCL5, preventing efficient neutrophil chemotaxis in response to endotoxin. Moreover, blocking IFNAR or TLR3 signaling abrogates the effect of Pf4 bound to OMVs on macrophage activation. In a murine acute pneumonia model, mice treated with Pf4 associated with OMVs show significantly less neutrophil infiltration in BAL fluid than mice treated with purified Pf4. These changes in macrophage phenotype are functionally relevant: conditioned media from cells exposed to Pf4 decorated with OMVs are significantly less effective at inducing neutrophil migration in vitro and in vivo. These results suggest that Pf4 phages alter innate immunity to bacterial endotoxin and OMVs, potentially dampening inflammation at sites of bacterial colonization or infection.
View details for DOI 10.3389/fcimb.2023.1250339
View details for PubMedID 37965262
View details for PubMedCentralID PMC10641230
-
APOE4/4 is linked to damaging lipid droplets in Alzheimer's microglia.
bioRxiv : the preprint server for biology
2023
Abstract
Several genetic risk factors for Alzheimer's Disease (AD) implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells. However, the relationship between lipid metabolism in glia and AD pathology remains poorly understood. Through single-nucleus RNA-sequencing of AD brain tissue, we have identified a microglial state defined by the expression of the lipid droplet (LD) associated enzyme ACSL1 with ACSL1-positive microglia most abundant in AD patients with the APOE4/4 genotype. In human iPSC-derived microglia (iMG) fibrillar Aβ (fAβ) induces ACSL1 expression, triglyceride synthesis, and LD accumulation in an APOE-dependent manner. Additionally, conditioned media from LD-containing microglia leads to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for AD with microglial LD accumulation and neurotoxic microglial-derived factors, potentially providing novel therapeutic strategies for AD.
View details for DOI 10.1101/2023.07.21.549930
View details for PubMedID 37546938
View details for PubMedCentralID PMC10401952
-
Elastin-like protein hydrogels with controllable stress relaxation rate and stiffness modulate endothelial cell function.
Journal of biomedical materials research. Part A
2023
Abstract
Mechanical cues from the extracellular matrix (ECM) regulate vascular endothelial cell (EC) morphology and function. Since naturally derived ECMs are viscoelastic, cells respond to viscoelastic matrices that exhibit stress relaxation, in which a cell-applied force results in matrix remodeling. To decouple the effects of stress relaxation rate from substrate stiffness on EC behavior, we engineered elastin-like protein (ELP) hydrogels in which dynamic covalent chemistry (DCC) was used to crosslink hydrazine-modified ELP (ELP-HYD) and aldehyde/benzaldehyde-modified polyethylene glycol (PEG-ALD/PEG-BZA). The reversible DCC crosslinks in ELP-PEG hydrogels create a matrix with independently tunable stiffness and stress relaxation rate. By formulating fast-relaxing or slow-relaxing hydrogels with a range of stiffness (500-3300Pa), we examined the effect of these mechanical properties on EC spreading, proliferation, vascular sprouting, and vascularization. The results show that both stress relaxation rate and stiffness modulate endothelial spreading on two-dimensional substrates, on which ECs exhibited greater cell spreading on fast-relaxing hydrogels up through 3days, compared with slow-relaxing hydrogels at the same stiffness. In three-dimensional hydrogels encapsulating ECs and fibroblasts in coculture, the fast-relaxing, low-stiffness hydrogels produced the widest vascular sprouts, a measure of vessel maturity. This finding was validated in a murine subcutaneous implantation model, in which the fast-relaxing, low-stiffness hydrogel produced significantly more vascularization compared with the slow-relaxing, low-stiffness hydrogel. Together, these results suggest that both stress relaxation rate and stiffness modulate endothelial behavior, and that the fast-relaxing, low-stiffness hydrogels supported the highest capillary density in vivo.
View details for DOI 10.1002/jbm.a.37520
View details for PubMedID 36861665
-
Tuning Polymer Hydrophilicity to Regulate Gel Mechanics and Encapsulated Cell Morphology.
Advanced healthcare materials
2022: e2200011
Abstract
Mechanically tunable hydrogels are attractive platforms for three-dimensional cell culture, as hydrogel stiffness plays an important role in cell behavior. Traditionally, hydrogel stiffness has been controlled through altering either the polymer concentration or the stoichiometry between crosslinker reactive groups. Here, we present an alternative strategy based upon tuning the hydrophilicity of an elastin-like protein (ELP). ELPs undergo a phase transition that leads to protein aggregation at increasing temperatures. We hypothesize that increasing this transition temperature through bioconjugation with azide-containing molecules of increasing hydrophilicity will allow direct control of the resulting gel stiffness by making the crosslinking groups more accessible. These azide-modified ELPs are crosslinked into hydrogels with bicyclononyne-modified hyaluronic acid (HA-BCN) using bioorthogonal, click chemistry, resulting in hydrogels with tunable storage moduli (100-1000Pa). Human mesenchymal stromal cells, human umbilical vein endothelial cells, and human neural progenitor cells are all observed to alter their cell morphology when encapsulated within hydrogels of varying stiffness. Taken together, we demonstrate the use of protein hydrophilicity as a lever to tune hydrogel mechanical properties. These hydrogels have tunable moduli over a stiffness range relevant to soft tissues, support the viability of encapsulated cells, and modify cell spreading as a consequence of gel stiffness. This article is protected by copyright. All rights reserved.
View details for DOI 10.1002/adhm.202200011
View details for PubMedID 35373510
-
A human multi-lineage hepatic organoid model for liver fibrosis.
Nature communications
2021; 12 (1): 6138
Abstract
To investigate the pathogenesis of a congenital form of hepatic fibrosis, human hepatic organoids were engineered to express the most common causative mutation for Autosomal Recessive Polycystic Kidney Disease (ARPKD). Here we show that these hepatic organoids develop the key features of ARPKD liver pathology (abnormal bile ducts and fibrosis) in only 21 days. The ARPKD mutation increases collagen abundance and thick collagen fiber production in hepatic organoids, which mirrors ARPKD liver tissue pathology. Transcriptomic and other analyses indicate that the ARPKD mutation generates cholangiocytes with increased TGFbeta pathway activation, which are actively involved stimulating myofibroblasts to form collagen fibers. There is also an expansion of collagen-producing myofibroblasts with markedly increased PDGFRB protein expression and an activated STAT3 signaling pathway. Moreover, the transcriptome of ARPKD organoid myofibroblasts resemble those present in commonly occurring forms of liver fibrosis. PDGFRB pathway involvement was confirmed by the anti-fibrotic effect observed when ARPKD organoids were treated with PDGFRB inhibitors. Besides providing insight into the pathogenesis of congenital (and possibly acquired) forms of liver fibrosis, ARPKD organoids could also be used to test the anti-fibrotic efficacy of potential anti-fibrotic therapies.
View details for DOI 10.1038/s41467-021-26410-9
View details for PubMedID 34686668
-
Elastin-like Proteins to Support Peripheral Nerve Regeneration in Guidance Conduits.
ACS biomaterials science & engineering
2021; 7 (9): 4209-4220
Abstract
Synthetic nerve guidance conduits (NGCs) offer an alternative to harvested nerve grafts for treating peripheral nerve injury (PNI). NGCs have been made from both naturally derived and synthesized materials. While naturally derived materials typically have an increased capacity for bioactivity, synthesized materials have better material control, including tunability and reproducibility. Protein engineering is an alternative strategy that can bridge the benefits of these two classes of materials by designing cell-responsive materials that are also systematically tunable and consistent. Here, we tested a recombinantly derived elastin-like protein (ELP) hydrogel as an intraluminal filler in a rat sciatic nerve injury model. We demonstrated that ELPs enhance the probability of forming a tissue bridge between the proximal and distal nerve stumps compared to an empty silicone conduit across the length of a 10 mm nerve gap. These tissue bridges have evidence of myelinated axons, and electrophysiology demonstrated that regenerated axons innervated distal muscle groups. Animals implanted with an ELP-filled conduit had statistically higher functional control at 6 weeks than those that had received an empty silicone conduit, as evaluated by the sciatic functional index. Taken together, our data support the conclusion that ELPs support peripheral nerve regeneration in acute complete transection injuries when used as an intraluminal filler. These results support the further study of protein engineered recombinant ELP hydrogels as a reproducible, off-the-shelf alternative for regeneration of peripheral nerves.
View details for DOI 10.1021/acsbiomaterials.0c01053
View details for PubMedID 34510904
-
Cancer-associated mesothelial cells promote ovarian cancer chemoresistance through paracrine osteopontin signaling.
The Journal of clinical investigation
2021; 131 (16)
Abstract
Ovarian cancer is the leading cause of gynecological malignancy-related deaths, due to its widespread intraperitoneal metastases and acquired chemoresistance. Mesothelial cells are an important cellular component of the ovarian cancer microenvironment that promote metastasis. However, their role in chemoresistance is unclear. Here, we investigated whether cancer-associated mesothelial cells promote ovarian cancer chemoresistance and stemness in vitro and in vivo. We found that osteopontin is a key secreted factor that drives mesothelial-mediated ovarian cancer chemoresistance and stemness. Osteopontin is a secreted glycoprotein that is clinically associated with poor prognosis and chemoresistance in ovarian cancer. Mechanistically, ovarian cancer cells induced osteopontin expression and secretion by mesothelial cells through TGF-beta signaling. Osteopontin facilitated ovarian cancer cell chemoresistance via the activation of the CD44 receptor, PI3K/AKT signaling, and ABC drug efflux transporter activity. Importantly, therapeutic inhibition of osteopontin markedly improved the efficacy of cisplatin in both human and mouse ovarian tumor xenografts. Collectively, our results highlight mesothelial cells as a key driver of ovarian cancer chemoresistance and suggest that therapeutic targeting of osteopontin may be an effective strategy for enhancing platinum sensitivity in ovarian cancer.
View details for DOI 10.1172/JCI146186
View details for PubMedID 34396988
-
Tunable Control of Hydrogel Microstructure by Kinetic Competition between Self-Assembly and Crosslinking of Elastin-like Proteins
ACS APPLIED MATERIALS & INTERFACES
2018; 10 (26): 21808–15
Abstract
The fabrication of three dimensional "bead-string" microstructured hydrogels is rationally achieved by controlling the relative timing of chemical crosslinking and physical self-assembly processes of an engineered protein. To demonstrate this strategy, an elastin-like protein (ELP) amino acid sequence was selected to enable site-specific chemical crosslinking and thermoresponsive physical self-assembly. This method allows the tuning of material microstructures without altering the ELP amino acid sequence but simply through controlling the chemical crosslinking extent before the thermally induced, physical coacervation of ELP. A loosely crosslinked network enables ELP to have greater chain mobility, resulting in phase segregation into larger beads. By contrast, a network with higher crosslinking density has restricted ELP chain mobility, resulting in more localized self-assembly into smaller beads. As a proof of concept application for this facile assembly process, we demonstrate one-pot, simultaneous, dual encapsulation of hydrophilic and hydrophobic model drugs within the microstructured hydrogel and differential release rates of the two drugs from the material.
View details for PubMedID 29869869
-
Covalently Adaptable Elastin-Like Protein-Hyaluronic Acid (ELP-HA) Hybrid Hydrogels with Secondary Thermoresponsive Crosslinking for Injectable Stem Cell Delivery
ADVANCED FUNCTIONAL MATERIALS
2017; 27 (28)
View details for DOI 10.1002/adfm.201605609
View details for Web of Science ID 000406183100001
-
Covalently adaptable elastin-like protein - hyaluronic acid (ELP - HA) hybrid hydrogels with secondary thermoresponsive crosslinking for injectable stem cell delivery.
Advanced functional materials
2017; 27 (28)
Abstract
Shear-thinning, self-healing hydrogels are promising vehicles for therapeutic cargo delivery due to their ability to be injected using minimally invasive surgical procedures. We present an injectable hydrogel using a novel combination of dynamic covalent crosslinking with thermoresponsive engineered proteins. Ex situ at room temperature, rapid gelation occurs through dynamic covalent hydrazone bonds by simply mixing two components: hydrazine-modified elastin-like protein (ELP) and aldehyde-modified hyaluronic acid. This hydrogel provides significant mechanical protection to encapsulated human mesenchymal stem cells during syringe needle injection and rapidly recovers after injection to retain the cells homogeneously within a 3D environment. In situ, the ELP undergoes a thermal phase transition, as confirmed by Coherent anti-Stokes Raman scattering microscopy observation of dense ELP thermal aggregates. The formation of the secondary network reinforces the hydrogel and results in a 10-fold slower erosion rate compared to a control hydrogel without secondary thermal crosslinking. This improved structural integrity enables cell culture for three weeks post injection, and encapsulated cells maintain their ability to differentiate into multiple lineages, including chondrogenic, adipogenic, and osteogenic cell types. Together, these data demonstrate the promising potential of ELP-HA hydrogels for injectable stem cell transplantation and tissue regeneration.
View details for DOI 10.1002/adfm.201605609
View details for PubMedID 33041740
View details for PubMedCentralID PMC7546546
-
Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling.
Nature materials
2017; 16 (12): 1233–42
Abstract
Neural progenitor cell (NPC) culture within three-dimensional (3D) hydrogels is an attractive strategy for expanding a therapeutically relevant number of stem cells. However, relatively little is known about how 3D material properties such as stiffness and degradability affect the maintenance of NPC stemness in the absence of differentiation factors. Over a physiologically relevant range of stiffness from ∼0.5 to 50 kPa, stemness maintenance did not correlate with initial hydrogel stiffness. In contrast, hydrogel degradation was both correlated with, and necessary for, maintenance of NPC stemness. This requirement for degradation was independent of cytoskeletal tension generation and presentation of engineered adhesive ligands, instead relying on matrix remodelling to facilitate cadherin-mediated cell-cell contact and promote β-catenin signalling. In two additional hydrogel systems, permitting NPC-mediated matrix remodelling proved to be a generalizable strategy for stemness maintenance in 3D. Our findings have identified matrix remodelling, in the absence of cytoskeletal tension generation, as a previously unknown strategy to maintain stemness in 3D.
View details for PubMedID 29115291
-
Hybrid elastin-like polypeptide-polyethylene glycol (ELP-PEG) hydrogels with improved transparency and independent control of matrix mechanics and cell ligand density.
Biomacromolecules
2014; 15 (9): 3421-3428
Abstract
Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, ELP hydrogels become opaque at body temperature because of ELP's lower critical solution temperature behavior. This opacity obstructs light-based observation of the morphology and behavior of encapsulated cells. In order to improve the transparency of ELP hydrogels for better imaging, we have designed a hybrid ELP-polyethylene glycol (PEG) hydrogel system that rapidly cross-links with tris(hydroxymethyl) phosphine (THP) in aqueous solution via Mannich-type condensation. As expected, addition of the hydrophilic PEG component significantly improves the light transmittance. Coherent anti-Stokes Raman scattering (CARS) microscopy reveals that the hybrid ELP-PEG hydrogels have smaller hydrophobic ELP aggregates at 37 °C. Importantly, this hydrogel platform enables independent tuning of adhesion ligand density and matrix stiffness, which is desirable for studies of cell-matrix interactions. Human fibroblasts encapsulated in these hydrogels show high viability (>98%) after 7 days of culture. High-resolution confocal microscopy of encapsulated fibroblasts reveals that the cells adopt a more spread morphology in response to higher RGD ligand concentrations and softer gel mechanics.
View details for DOI 10.1021/bm500969d
View details for PubMedID 25111283
-
Hybrid Elastin-like Polypeptide-Polyethylene Glycol (ELP-PEG) Hydrogels with Improved Transparency and Independent Control of Matrix Mechanics and Cell Ligand Density
BIOMACROMOLECULES
2014; 15 (9): 3421-3428
View details for DOI 10.1021/bm500969d
View details for Web of Science ID 000341409800024
-
Sequence-Specific Crosslinking of Electrospun, Elastin-Like Protein Preserves Bioactivity and Native-Like Mechanics
ADVANCED HEALTHCARE MATERIALS
2013; 2 (1): 114-118
View details for DOI 10.1002/adhm.201200115
View details for Web of Science ID 000315121900009
View details for PubMedID 23184558
View details for PubMedCentralID PMC3641778