Clinical Focus


  • Infectious Disease

Academic Appointments


Professional Education


  • Fellowship: Stanford University Infectious Disease Fellowships (2023) CA
  • Board Certification: American Board of Internal Medicine, Infectious Disease (2021)
  • Board Certification: American Board of Internal Medicine, Internal Medicine (2019)
  • Residency: UCLA Medical Center Internal Medicine (2019) CA
  • Medical Education: University of Southern California Keck School of Medicine (2016) CA

All Publications


  • Phages in vaccine design and immunity; mechanisms and mysteries. Current opinion in biotechnology de Vries, C. R., Chen, Q. n., Demirdjian, S. n., Kaber, G. n., Khosravi, A. n., Liu, D. n., Van Belleghem, J. D., Bollyky, P. L. 2020; 68: 160–65

    Abstract

    Bacteriophages have attracted extensive interest in vaccine design. This includes the use of phage display technology to select antigens, the use of engineered phages displaying target antigens in vaccine formulations, and phage DNA vaccines. However, the development of these approaches is limited in part by uncertainty regarding the underlying mechanisms by which phages elicit immunity. This has stymied the clinical development of this technology. Here we review the immunology of phage vaccines and highlight the gaps in our knowledge regarding the underlying mechanisms. First, we review the basic biology of phages and their use in vaccines. Next we discuss what is known about the mechanisms of immunity against engineered phages and phage DNA. Finally, we highlight the gaps in our understanding regarding the immunogenicity of these preparations. We argue that mechanistic insight into the immunology of phage vaccines is essential for the further development and clinical utility of these technologies.

    View details for DOI 10.1016/j.copbio.2020.11.002

    View details for PubMedID 33316575