Independent Labs, Institutes, and Centers (Dean of Research)


Showing 101-154 of 154 Results

  • Thomas Clandinin

    Thomas Clandinin

    Shooter Family Professor

    Current Research and Scholarly InterestsThe Clandinin lab focuses on understanding how neuronal circuits assemble and function to perform specific computations and guide behavior. Taking advantage of a rich armamentarium of genetic tools available in the fruit fly, combined with imaging, physiology and analytical techniques drawn from systems neuroscience, we examine a variety of visual circuits.

  • Daniel Clark, MD, MPH

    Daniel Clark, MD, MPH

    Clinical Assistant Professor, Medicine - Cardiovascular Medicine
    Clinical Assistant Professor, Pediatrics - Cardiology

    BioDr. Clark is a board-certified, fellowship-trained cardiologist with the Adult Congenital Heart Program at Stanford Health Care. He is also a clinical assistant professor with dual appointments in the Division of Cardiovascular Medicine, Department of Medicine and the Division of Cardiology, Department of Pediatrics at Stanford University School of Medicine.

    Dr. Clark specializes in the diagnosis and treatment of adult congenital heart disease (ACHD) and the management of congenital and acquired heart disease in children. His clinical focus involves the combined use of cardiac magnetic resonance (CMR) and other imaging techniques to evaluate patients with known or suspected cardiovascular disease. Dr. Clark’s extensive training and experience with these techniques include multiple fellowships in adult cardiology, cardiovascular imaging, and ACHD.

    Dr. Clark is currently a co-investigator on multiple research studies. During his fellowship, he received a training grant from the National Institutes of Health enabling evaluation of the ability of CMR to diagnose COVID-19-associated heart inflammation among college athletes. He currently uses CMR to assess heart transplant outcomes in donors positive for hepatitis C virus. Dr. Clark also received a research grant from the Adult Congenital Heart Disease Association supporting a randomized, controlled clinical trial of cardiac rehabilitation among patients with Fontan failure.

    Dr. Clark serves as a peer reviewer for multiple prestigious journals, including The New England Journal of Medicine, Circulation, Journal of the American College of Cardiology, and Journal of the American Heart Association (JAHA). He serves on the editorial board for both JAHA and Circulation: Cardiovascular Imaging. He is also a member of numerous professional medical societies, including the American College of Cardiology, the American Heart Association, and the Adult Congenital Heart Association.

  • David Clark

    David Clark

    Professor of Anesthesiology, Perioperative and Pain Medicine

    BioMy career is dedicated to improving the safety, effectiveness and availability of pain relief. Both the needs and opportunities in these areas are limitless. I have had the good fortune of working as a clinician, teacher and scientist at Stanford University and the Palo Alto VA hospital for more than two decades.

    Much of my time is spent on laboratory, translational and clinical research. In the laboratory, we are pursuing several projects related to the questions of why pain sometimes becomes chronic after injuries and why opioids lose their effectiveness over time. Alterations in endogenous pain control mechanisms and the involvement of the adaptive system of immunity are central to these investigations. We would like to find ways to maximize functional recovery after surgery and other forms of trauma while minimizing the risks of analgesic use. This work involves local, national and international collaborations. Clinical trials work involves establishing the efficacy of novel forms of analgesic therapy as well as the comparative effectiveness of long-established approaches to controlling common forms of pain such as low back pain. This spectrum of pain-related pursuits continues to evolve with the rapid expansion of the field.

  • Eve Clark

    Eve Clark

    Richard Lyman Professor in the Humanities, Emerita

    BioI am interested in first language acquisition, the acquisition of meaning, acquisitional principles in word-formation compared across children and languages, and general semantic and pragmatic issues in the lexicon and in language use. I am currently working on the kinds of pragmatic information adults offer small children as they talk to them, and on children's ability to make use of this information as they make inferences about unfamiliar meanings and about the relations between familiar and unfamiliar words. I am interested in the inferences children make about where to 'place' unfamiliar words, how they identify the relevant semantic domains, and what they can learn about conventional ways to say things based on adult responses to child errors during acquisition. All of these 'activities' involve children and adults placing information in common ground as they interact. Another current interest of mine is the construction of verb paradigms: how do children go from using a single verb form to using forms that contrast in meaning -- on such dimensions as person, number, and tense? How do they learn to distinguish the meanings of homophones? To what extent do they make use of adult input to discern the underlying structure of the system? And how does conversation with more expert speakers (usually adults) foster the acquisition of a first language? I am particularly interested in the general role of practice along with feedback here.

  • Michael F. Clarke, M.D.

    Michael F. Clarke, M.D.

    Karel H. and Avice N. Beekhuis Professor of Cancer Biology

    Current Research and Scholarly InterestsDr. Clarke maintains a laboratory focused on two areas of research: i) the control of self-renewal of normal stem cells and diseases such as cancer and hereditary diseases; and ii) the identification and characterization of cancer stem cells. His laboratory is investigating how perturbations of stem cell regulatory machinery contributes to human disease. In particular, the laboratory is investigating epigenetic regulators of self renewal, the process by which stem cells regenerate themselves.

  • Carol Clayberger

    Carol Clayberger

    Professor (Research) of Pediatrics, Emerita

    Current Research and Scholarly InterestsOur group uses molecular biology, biochemistry, and cellular immunology to investigate the activation and effector function of T lymphocytes. Research in the laboratory is currently focused on three areas: granulysin, a lytic molecule expressed late (7-12 days) after T cell activation; identification of correlates of immunity in diseases such as tuberculosis; and tolerance. The long term goal of this work is to develop new ways to treat human disease.

  • William Clusin, MD

    William Clusin, MD

    Associate Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsCardiac action potentials; tissue culture, voltage, clamp technique; role of calcium in ischemia arrhythmias; coronary, artery disease; myocardial infarction.

  • Maria Inmaculada Cobos Sillero

    Maria Inmaculada Cobos Sillero

    Associate Professor of Pathology

    Current Research and Scholarly InterestsOur lab uses cellular and molecular methods, single-cell technology, and quantitative histology to study human neurodegenerative diseases. Current projects include:

    - Using single-cell RNA-sequencing to understand selective vulnerability and disease progression in human Alzheimer’s disease brain

    - Investigating mechanisms of tau-related neurodegeneration in human brain

    - Studying the neocortical and limbic systems in Diffuse Lewy Body Disease (DLBD) at the single cell level

  • Jennifer R. Cochran

    Jennifer R. Cochran

    Senior Associate Vice Provost for Research, Addie and Al Macovski Professor and Professor of Bioengineering

    Current Research and Scholarly InterestsMolecular Engineering, Protein Biochemistry, Biotechnology, Cell and Tissue Engineering, Molecular Imaging, Chemical Biology

  • Ryan Coffee

    Ryan Coffee

    Senior Scientist, SLAC National Accelerator Laboratory

    Current Role at StanfordSr. Staff Scientist at SLAC National Accelerator Laboratory

  • Geoffrey Cohen

    Geoffrey Cohen

    James G. March Professor of Organizational Studies in Education and Business, Professor of Psychology and, by courtesy, of Organizational Behavior at the Graduate School of Business

    Current Research and Scholarly InterestsMuch of my research examines processes related to identity maintenance and their implications for social problems. One primary aim of my research is the development of theory-driven, rigorously tested intervention strategies that further our understanding of the processes underpinning social problems and that offer solutions to alleviate them. Two key questions lie at the core of my research: “Given that a problem exists, what are its underlying processes?” And, “Once identified, how can these processes be overcome?” One reason for this interest in intervention is my belief that a useful way to understand psychological processes and social systems is to try to change them. We also are interested in how and when seemingly brief interventions, attuned to underlying psychological processes, produce large and long-lasting psychological and behavioral change.

    The methods that my lab uses include laboratory experiments, longitudinal studies, content analyses, and randomized field experiments. One specific area of research addresses the effects of group identity on achievement, with a focus on under-performance and racial and gender achievement gaps. Additional research programs address hiring discrimination, the psychology of closed-mindedness and inter-group conflict, and psychological processes underlying anti-social and health-risk behavior.

  • Harvey Cohen

    Harvey Cohen

    Deborah E. Addicott - John A. Kriewall and Elizabeth A. Haehl Family Professor of Pediatrics, Emeritus

    Current Research and Scholarly InterestsMy research interests extend from hypothesis-driven studies in biochemistry and cell biology to discovery-driven interests in proteomics and systems biology to clinical treatment of acute lymphoblastic leukemia of children, and pediatric palliative care.

  • Stanley N. Cohen, MD

    Stanley N. Cohen, MD

    Kwoh-Ting Li Professor in the School of Medicine, Professor of Genetics and of Medicine

    Current Research and Scholarly InterestsWe study mechanisms that affect the expression and decay of normal and abnormal mRNAs, and also RNA-related mechanisms that regulate microbial antibiotic resistance. A small bioinformatics team within our lab has developed knowledge based systems to aid in investigations of genes.

  • Todd Coleman

    Todd Coleman

    Associate Professor of Bioengineering and, by courtesy, of Electrical Engineering

    BioTodd P. Coleman is an Associate Professor in the Department of Bioengineering, and by courtesy, Electrical Engineering at Stanford University. He received B.S. degrees in electrical engineering (summa cum laude), as well as computer engineering (summa cum laude) from the University of Michigan (Go Blue). He received M.S. and Ph.D. degrees from MIT in electrical engineering and computer science. He did postdoctoral studies at MIT and Mass General Hospital in quantitative neuroscience. He previously was a faculty member in the Departments of Electrical & Computer Engineering and Bioengineering at the University of Illinois, Urbana-Champaign, and the University of California, San Diego, respectively. Dr. Coleman’s research is very multi-disciplinary, using tools from applied probability, physiology, and bioelectronics. Examples include, for instance, optimal transport methods in high-dimensional uncertainty quantification and developing technologies and algorithms to monitor and modulate physiology of the nervous systems in the brain and visceral organs. He has served as a Principal Investigator on grants from the NSF, NIH, Department of Defense, and multiple private foundations. Dr. Coleman is an inventor on 10 granted US patents. He has been selected as a Gilbreth Lecturer for the National Academy of Engineering, a TEDMED speaker, and a Fellow of IEEE as well as the American Institute for Medical and Biological Engineering. He is currently the Chair of the National Academies Standing Committee on Biotechnology Capabilities and National Security Needs.

  • Nicholas Alvaro Coles

    Nicholas Alvaro Coles

    Research Scientist

    BioI am a Research Scientist at Stanford University and the co-Director of the Stanford Big Team Science Lab. I conduct research on emotions, big team science, and AI.

    In affective science, I seek to understand the social, cognitive, and physiological processes that underlie emotion. Much of my research here has focused on examining the extent to which sensorimotor feedback from the peripheral nervous system (e.g., changes in heart rate and muscle tension) impact the conscious experience of emotion.

    In big team science, I seek to build infrastructure that allows researchers to collaboratively tackle ultra-complex questions in science. In this domain, I co-direct the Stanford Big Team Science Lab, where I support various big team science initiatives (e.g., the Virtual Experience Research Accelerator, Psychological Science Accelerator, and ManyBabies Consortium).

    In artificial intelligence, I am interested in ways that these new technologies can be used to monitor, predict, and change humans' emotions. For example, I recently founded the Emotion Physiology and Experience Collaboration, which seeks to improve the algorithmic recognition of emotion by (a) documenting cultural and contextual sources of model bias, and (b) building foundational datasets that can improve these models.

  • Steven Hartley Collins

    Steven Hartley Collins

    Associate Professor of Mechanical Engineering and, by courtesy, of Bioengineering

    BioSteve Collins is an Associate Professor of Mechanical Engineering at Stanford University, where he teaches courses on design and robotics and directs the Stanford Biomechatronics Laboratory. His primary focus is to speed and systematize the design and prescription of prostheses and exoskeletons using versatile device emulator hardware and human-in-the-loop optimization algorithms (Zhang et al. 2017, Science). Another interest is efficient autonomous devices, such as highly energy-efficient walking robots (Collins et al. 2005, Science) and exoskeletons that use no energy yet reduce the metabolic energy cost of human walking (Collins et al. 2015, Nature).

    Prof. Collins received his B.S. in Mechanical Engineering in 2002 from Cornell University, where he performed undergraduate research on passive dynamic walking robots. He received his Ph.D. in Mechanical Engineering in 2008 from the University of Michigan, where he performed research on the dynamics and control of human walking. He performed postdoctoral research on humanoid robots at T. U. Delft in the Netherlands. He was a professor of Mechanical Engineering and Robotics at Carnegie Mellon University for seven years. In 2017, he joined the faculty of Mechanical Engineering at Stanford University.

    Prof. Collins is a member of the Scientific Board of Dynamic Walking and the Editorial Board of Science Robotics. He has received the Young Scientist Award from the American Society of Biomechanics, the Best Medical Devices Paper from the International Conference on Robotics and Automation, and the student-voted Professor of the Year in his department.

  • Le Cong

    Le Cong

    Assistant Professor of Pathology (Pathology Research) and of Genetics

    Current Research and Scholarly InterestsOur lab are developing gene-editing technologies, such as CRISPR systems for in vivo therapy, and cleavage-free techniques for large gene insertion via microbial recombinase. Our team also pioneers in single-cell tracking for cancer and immunology studies using novel CRISPR tools. To accelerate our work, we integrate AI and machine learning into these technologies, design and evolve proteins/RNAs, pushing frontiers in understanding and treating neurological and immunological disease.

  • Christos E. Constantinou

    Christos E. Constantinou

    Associate Professor of Urology, Emeritus

    Current Research and Scholarly InterestsMy main recent interest is the application of Biomedical Engineering approaches for the clinical visualization and characterization of the static and dynamic properties of pelvic floor function. This extends to ultrasound Imaging and image processing, construction of computer models and biomechanics analysis of pelvic floor function. It is envisioned that these considerations are important constituents of the clinical evaluation of patients with lower urinary tract dysfunction and urodynamics.

  • Christopher H. Contag

    Christopher H. Contag

    Professor of Pediatrics (Neonatology), Emeritus

    Current Research and Scholarly InterestsWe develop and use the tools of molecular imaging to understand oncogenesis, reveal patterns of cell migration in immunosurveillance, monitor gene expression, visualize stem cell biology, and assess the distribution of pathogens in living animal models of human biology and disease. Biology doesn't occur in "a vacuum" or on coated plates--it occurs in the living body and that's were we look for biological patterns and responses to insult.

  • Simon Conti

    Simon Conti

    Clinical Associate Professor, Urology

    BioI am a founding member of the Stanford Urolithiasis Project, where we have studied population health datasets to examine surgical outcomes and environmental risk factors in urinary stone disease. Our current focus includes socioeconomic and ethnic disparities in kidney stone disease, water quality and stone disease, pregnancy in kidney stone disease and geographical variations in kidney stones incidence and metabolic kidney stone work up.

  • John P. Cooke, MD, PhD

    John P. Cooke, MD, PhD

    Professor of Medicine (Cardiovascular Medicine), Emeritus

    Current Research and Scholarly InterestsOur translational research program in vascular regeneration is focused on generating and characterizing vascular cells from human induced pluripotential stem cells. We are also studying the therapeutic application of these cells in murine models of peripheral arterial disease. In these studies we leverage our longstanding interest in endothelial signaling, eg by nitric oxide synthase (NOS) as well as by nicotinic cholinergic receptors (nAChR).

  • David N. Cornfield

    David N. Cornfield

    Anne T. and Robert M. Bass Professor of Pediatric Pulmonary Medicine

    Current Research and Scholarly InterestsOver the past 20 years, the Cornfield Laboratory has focused upon basic, translational and clinical research, with a primary focus on lung biology. As an active clinician-scientist, delivering care to acutely and chronically ill infants and children, our lab focuses on significant clinical challenges and tried to use science to craft novel solutions to difficult clinical problems.

  • Steven M. Corsello

    Steven M. Corsello

    Assistant Professor of Medicine (Oncology) and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur laboratory operates at the intersection of functional genomics and chemical biology, with the goal of advancing novel molecular mechanisms of cancer inhibition to clinical use. We aim to 1) leverage phenotypic screening and functional genomics to determine novel anti-cancer mechanisms of small molecules, 2) develop new targeted therapy approaches against solid tumors, and 3) build a comprehensive community resource for drug repurposing discovery.

  • Markus Covert

    Markus Covert

    Shriram Chair of the Department of Bioengineering, Professor of Bioengineering and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur focus is on building computational models of complex biological processes, and using them to guide an experimental program. Such an approach leads to a relatively rapid identification and validation of previously unknown components and interactions. Biological systems of interest include metabolic, regulatory and signaling networks as well as cell-cell interactions. Current research involves the dynamic behavior of NF-kappaB, an important family of transcription factors.

  • Tina Cowan

    Tina Cowan

    Professor of Pathology (Clinical) and, by courtesy, of Pediatrics (Genetics)

    Current Research and Scholarly Interestsscreening and diagnosis of patients with inborn errors of metabolism, including newborn screening, development of new testing methods and genotype/phenotype correlations.

  • Gerald Crabtree

    Gerald Crabtree

    David Korn, MD, Professor of Pathology and Professor of Developmental Biology

    Current Research and Scholarly InterestsChromatin regulation and its roles in human cancer and the development of the nervous system. Engineering new methods for studying and controlling chromatin and epigenetic regulation in living cells.

  • Graham Creasey

    Graham Creasey

    Paralyzed Veterans of America Professor of Spinal Cord Injury Medicine, Emeritus

    Current Research and Scholarly InterestsNeural prostheses to stimulate and record from the peripheral and central nervous system, thereby directly connecting nervous systems with electronic systems

    Neural prostheses for control of bladder, bowel and sexual function after spinal cord injury

  • Jonas Cremer

    Jonas Cremer

    Assistant Professor of Biology

    Current Research and Scholarly InterestsWe are a highly interdisciplinary research team, joined in our desire to better understand microbial life. To elucidate how bacterial cells accumulate biomass and grow, we work with the model organism Escherichia coli. We further focus on gut bacteria and their interactions with the human host. Our approaches combine quantitative experimentation and mathematical modeling.

  • Martha Crenshaw

    Martha Crenshaw

    Senior Fellow at the Freeman Spogli Institute for International Studies, Emerita

    Current Research and Scholarly InterestsAs a lead investigator with the National Center for the Study of Terrorism and the Response to Terrorism (START) at the University of Maryland, funded by the Department of Homeland Security, Martha Crenshaw analyzed failed and foiled terrorist plots against the United States and its allies by jihadist groups since 1993. A dataset including events in the United States, the EU, and NATO countries follows the GTD coding rules.

  • Craig Criddle

    Craig Criddle

    Professor of Civil and Environmental Engineering, Emeritus

    Current Research and Scholarly InterestsCriddle's interests include microbial biotechnology for the circular economy, including recovery of clean water from used water, renewable energy, valuable materials that can replace fossil-carbon derived materials. Current projects include energy-efficient anaerobic wastewater treatment technology, assessment of new treatment trains that yield high quality water; fossil carbon plastics biodegradation, and biotechnology for production of bioplastics that can replace fossil carbon plastics.

  • Patricia Cross

    Patricia Cross

    Professor (Teaching) of Structural Biology, Emerita

    Current Research and Scholarly InterestsI am not now actively involved in research, but my past endeavors remain central to my position in guiding medical students in their scholarship pursuits.
    The cited publications represent three areas of interest:
    (1) medical student research (Jacobs and Cross)
    (2) women in medicine (Cross and Steward)
    (3) the reproductive physiology of early development (Cross and Brinster)
    Only one publication is listed in this area since the research is not current, but others (in e.g. Nature, DevBiol, ExpCellRes) give a broader picture of my pursuit when at the University of Pennsylvania.

  • Larry Crowder

    Larry Crowder

    Edward Ricketts Provostial Professor, Professor of Oceans, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Biology

    Current Research and Scholarly InterestsEcology, conservation, fisheries, protected species, ecosystem-based management

  • Alia Crum

    Alia Crum

    Associate Professor of Psychology and, by courtesy, of Medicine (Primary Care & Population Health)

    Current Research and Scholarly InterestsOur lab focuses on how subjective mindsets (e.g., thoughts, beliefs and expectations) can alter objective reality through behavioral, psychological, and physiological mechanisms. We are interested in understanding how mindsets affect important outcomes both within and beyond the realm of medicine, in the domains such as exercise, diet and stress. https://mbl.stanford.edu/

  • James P. Cryan

    James P. Cryan

    Senior Scientist, SLAC National Accelerator Laboratory

    Current Role at StanfordPrincipal Investigator, Stanford PULSE Institute
    Atomic, Molecular, and Optical Sciences Department Head, Linac Coherent Light Source.

  • Bianxiao Cui

    Bianxiao Cui

    Job and Gertrud Tamaki Professor of Chemistry

    Current Research and Scholarly InterestsOur objective is to develop new biophysical methods to advance current understandings of cellular machinery in the complicated environment of living cells. Currently, we are focusing on four research areas: (1) Membrane curvature at the nano-bio interface; (2) Nanoelectrode arrays (NEAs) for scalable intracellular electrophysiology; (3) Electrochromic optical recording (ECORE) for neuroscience; and (4) Optical control of neurotrophin receptor tyrosine kinases.

  • Yi Cui

    Yi Cui

    Fortinet Founders Professor, Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, Senior Fellow at Woods and Professor, by courtesy, of Chemistry

    BioCui studies fundamentals and applications of nanomaterials and develops tools for their understanding. Research Interests: nanotechnology, batteries, electrocatalysis, wearables, 2D materials, environmental technology (water, air, soil), cryogenic electron microscopy.

  • Catherine Curtin MD

    Catherine Curtin MD

    Professor of Surgery (Plastic & Reconstructive Surgery) and, by courtesy, of Orthopaedic Surgery

    Current Research and Scholarly InterestsMaintaining and optimizing upper limb function in people with spinal cord injury and other nerve disorders.
    Improving pain and general well being after severe hand injuries.
    Improving treatment and recognition of pain.

  • Christina Curtis

    Christina Curtis

    RZ Cao Professor, Professor of Genetics and of Biomedical Data Science

    Current Research and Scholarly InterestsThe Curtis laboratory for Cancer Computational and Systems Biology is focused on the development and application of innovative experimental, computational, and analytical approaches to improve the diagnosis, treatment, and early detection of cancer.

  • Mark Cutkosky

    Mark Cutkosky

    Fletcher Jones Professor in the School of Engineering

    BioCutkosky applies analyses, simulations, and experiments to the design and control of robotic hands, tactile sensors, and devices for human/computer interaction. In manufacturing, his work focuses on design tools for rapid prototyping.

  • Martha S. Cyert

    Martha S. Cyert

    Dr. Nancy Chang Professor

    Current Research and Scholarly InterestsThe Cyert lab is identifying signaling networks for calcineurin, the conserved Ca2+/calmodulin-dependent phosphatase, and target of immunosuppressants FK506 and cyclosporin A, in yeast and mammals. Cell biological investigations of target dephosphorylation reveal calcineurin’s many physiological functions. Roles for short linear peptide motifs, or SLiMs, in substrate recognition, network evolution, and regulation of calcineurin activity are being studied.

  • Agnieszka Czechowicz, MD, PhD

    Agnieszka Czechowicz, MD, PhD

    Assistant Professor of Pediatrics (Stem Cell Transplantation)

    Current Research and Scholarly InterestsDr. Czechowicz’s research is aimed at understanding how hematopoietic stem cells interact with their microenvironment in order to subsequently modulate these interactions to improve bone marrow transplantation and unlock biological secrets that further enable regenerative medicine broadly. This work can be applied across a variety of disease states ranging from rare genetic diseases, autoimmune diseases, solid organ transplantation, microbiome-augmentation and cancer.