Bio-X


Showing 11-20 of 93 Results

  • Maria Barna

    Maria Barna

    Associate Professor of Genetics

    Current Research and Scholarly InterestsOur lab studies how intricate control of gene expression and cell signaling is regulated on a minute-by-minute basis to give rise to the remarkable diversity of cell types and tissue morphology that form the living blueprints of developing organisms. Work in the Barna lab is presently split into two main research efforts. The first is investigating ribosome-mediated control of gene expression genome-wide in space and time during cellular differentiation and organismal development. This research is opening a new field of study in which we apply sophisticated mass spectrometry, computational biology, genomics, and developmental genetics, to characterize a ribosome code to gene expression. Our research has shown that not all of the millions of ribosomes within a cell are the same and that ribosome heterogeneity can diversify how genomes are translated into proteomes. In particular, we seek to address whether fundamental aspects of gene regulation are controlled by ribosomes harboring a unique activity or composition that are tuned to translating specific transcripts by virtue of RNA regulatory elements embedded within their 5’UTRs. The second research effort is centered on employing state-of-the-art live cell imaging to visualize cell signaling and cellular control of organogenesis. This research has led to the realization of a novel means of cell-cell communication dependent on a dense network of actin-based cellular extension within developing organs that interconnect and facilitate the precise transmission of molecular information between cells. We apply and create bioengineering tools to manipulate such cellular interactions and signaling in-vivo.

  • Christopher O. Barnes

    Christopher O. Barnes

    Assistant Professor of Biology and, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsResearch in our lab is aimed at defining the structural correlates of broad and potent antibody-mediated neutralization of viruses. We combine biophysical and structural methods (e.g., cryo-EM), protein engineering, and in vivo approaches to understand how enveloped viruses infect host cells and elicit antigen-specific immune responses. We are particularly interested in the co-evolution of HIV-1 and broadly-neutralizing IgG antibodies (bNAbs), which may hold the key to the development of an effective HIV-1 vaccine. In addition, we are investigating antibody responses to SARS-CoV-2 and related zoonotic coronaviruses (CoV), with the related goal of developing broadly-protective immunotherapies and vaccines against variants of concern and emerging CoV threats.

    HIV-1; SARS-CoV-2; coronaviruses; cryo-EM; crystallography; vaccines; directed evolution

  • Annelise E. Barron

    Annelise E. Barron

    Associate Professor of Bioengineering
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsBiophysical mechanisms of host defense peptides (a.k.a. antimicrobial peptides) and their peptoid mimics; also, molecular and cellular biophysics of human innate immune responses.

  • Greg Barsh

    Greg Barsh

    Professor of Genetics and of Pediatrics, Emeritus

    Current Research and Scholarly InterestsGenetics of color variation

  • Michael Bassik

    Michael Bassik

    Associate Professor of Genetics

    Current Research and Scholarly InterestsWe are an interdisciplinary lab focused on two major areas:(1) we seek to understand mechanisms of cancer growth and drug resistance in order to find new therapeutic targets(2) we study mechanisms by which macrophages and other cells take up diverse materials by endocytosis and phagocytosis; these substrates range from bacteria, viruses, and cancer cells to drugs and protein toxins. To accomplish these goals, we develop and use new technologies for high-throughput functional genomics.

  • Glaivy Batsuli, MD

    Glaivy Batsuli, MD

    Assistant Professor of Pediatrics (Hematology/Oncology)

    Current Research and Scholarly InterestsHemophilia is a rare inherited X-linked bleeding disorder characterized by the deficiency of blood clotting proteins factor VIII or factor IX. These individuals are at risk for spontaneous bleeds and trauma or surgery-induced bleeding. There have been remarkable advancements in the management of hemophilia to prevent these bleeding episodes and improve quality of life. However, the presence of neutralizing antibodies, called inhibitors, still dictates access to novel therapies such as factor replacement for bleed management and now FDA-approved gene therapies. The Batsuli Lab is focused on elucidating mechanisms of the immune response to blood coagulation proteins in bleeding disorders in order to develop strategies and therapeutics for inhibitor prevention and tolerance induction.

    Dr. Batsuli's clinical research interests also include clinical trial participation for novel therapeutics & interventions in bleeding disorders such as hemophilia and von Willebrand disease in addition to coagulation issues & outcomes in ultra-rare bleeding disorders and sickle cell disease.

  • Fiona Baumer

    Fiona Baumer

    Assistant Professor of Neurology (Pediatric Neurology) and of Pediatrics

    Current Research and Scholarly InterestsCauses of Disturbed Cognition in Pediatric Epilepsy

  • Mohsen Bayati

    Mohsen Bayati

    Carl and Marilynn Thoma Professor in the Graduate School of Business and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly Interests1) Healthcare management: I am interested in improving healthcare delivery using data-driven modeling and decision-making.

    2) Network models and message-passing algorithms: I work on graphical modeling ideas motivated from statistical physics and their applications in statistical inference.

    3) Personalized decision-making: I work on machine learning and statistical challenges of personalized decision-making. The problems that I have worked on are primarily motivated by healthcare applications.

  • Tina Baykaner

    Tina Baykaner

    Assistant Professor of Medicine (Cardiovascular Medicine)

    BioTina Baykaner is an Assistant Professor in the Department of Internal Medicine, Division of Cardiovascular Medicine and Electrophysiology. Following internal medicine residency, cardiovascular medicine and advanced heart failure fellowship trainings at University of California, San Diego and electrophysiology fellowship at Stanford University, Dr. Baykaner joined Stanford University faculty in 2018. She has published over 200 papers, book chapters and abstracts including over 80 original peer-reviewed articles, and delivered over 40 invited presentations in national and international meetings. She serves as associate editor, section editor and editorial board member of four electrophysiology journals.

    Dr. Baykaner’s current research interests include outcomes research, epidemiology and mechanisms of rhythm disorders. She is currently funded by the National Institutes of Health to study patient related outcomes regarding atrial fibrillation (AF) ablation. She received prior research funding from American Heart Association and Heart Rhythm Society. Dr. Baykaner's clinical practice focuses on ablation of atrial and ventricular arrhythmias, SVTs, inappropriate sinus tachycardia management, device implantation and device extraction.

    Dr. Baykaner is an active member of American Heart Association (AHA), American College of Cardiology (ACC), Heart Rhythm Society (HRS) and European Society of Cardiology (ESC). She serves as an elected member of the Communications Committee for HRS, and previously served as an elected member of the ACC Task Force ICD research committee. She also served in the Organizing Committee for Stanford Cardiovascular Institute Annual Postdoctoral Research Meeting in 2017 and 2018 and for Early Career related sessions for HRS Scientific Sessions in 2019 and 2020.

  • Philip Beachy

    Philip Beachy

    The Ernest and Amelia Gallo Professor, Professor of Urology, of Developmental Biology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsFunction of Hedgehog proteins and other extracellular signals in morphogenesis (pattern formation), in injury repair and regeneration (pattern maintenance). We study how the distribution of such signals is regulated in tissues, how cells perceive and respond to distinct concentrations of signals, and how such signaling pathways arose in evolution. We also study the normal roles of such signals in stem-cell physiology and their abnormal roles in the formation and expansion of cancer stem cells.