Bio


Maria Barna is an Associate Professor in the Department of Genetics at Stanford University. Dr. Barna obtained her B.A. in Anthropology from New York University and her Ph.D. from Cornell University, Weill Graduate School of Medicine. She completed her thesis work in the lab of Dr. Lee Niswander in the Developmental Biology Department at Sloan Kettering Institute in 2007. Dr. Barna was subsequently appointed as a UCSF Fellow through the Sandler Fellows program, which enables exceptionally promising young scientists to establish independent research programs immediately following graduate school. Dr. Barna has received a number of distinctions including being named a Pew Scholar, Alfred P. Sloan Research Fellow, and top ’40 under 40’ by the Cell Journal. She has received the Basil O’ Connor Scholar Research Award and the NIH Directors New Innovator Award. In 2016, she was the recipient of the Rosalind Franklin Young Investigator Award, an award given to two female scientist in the world every three years in the field of genetics, the American Society for Cell Biology Emerging Leader Prize, and the RNA Society Early Career Award. She has also received the inaugural Elizabeth Hay award from the Society of Developmental Biology, the H.W. Mossman Award in Developmental Biology and the Tsuneko and Reiji “Okazaki” Award, among others. She is presently a NYSCF Robertson Stem Cell Investigator.

Academic Appointments


Honors & Awards


  • RNA Society Early Career Award, RNA Society (2019)
  • Harland Winfield Mossman Award in Developmental Biology, American Association of Anatomists (2017)
  • Inaugural Elizabeth Hay Award, Society of Developmental Biology (2017)
  • Tsuneko and Reiji 'Okazaki Award', Japan (2017)
  • American Society for Cell Biology Emerging Leader Prize, ASCB (2016)
  • McCormick and Gabilan Fellow, Stanford University (2016)
  • Robertson Stem Cell Investigator, New York Stem Cell Foundation (2016)
  • Rosalind Franklin Young Investigator Award, Gruber Foundation and Genetics Society of America (2016)
  • Kavli Frontiers of Science Fellow, National Academy of Science (2015)
  • Alfred P. Sloan Research Fellow, Alfred P. Sloan Foundation (2014)
  • Mallinckrodt Foundation Award, Edward Mallinckrodt Jr. Foundation (2014)
  • Pew Scholars Award, Pew Charitable Trusts (2014)
  • Top '40 under 40', Cell Press (2014)
  • NIH Director’s New Innovator Award, NIH (2011)
  • Basil O'Connor Scholar Research Award, March of Dimes (2010)
  • National Institutes of Child Health and Development Pediatric LRP, NIH (2009)
  • UCSF Faculty Fellows Program, UCSF Program for Breakthrough Biomedical Research, University of California, San Francisco (2007)
  • Nominated, Harold M. Weintraub Graduate Student Award, Cornell University (2006)
  • Vincent du Vigneaud Award of Excellence for Graduate Research, Cornell University (2004)
  • Outstanding Undergraduate Research Award, New York University (1996, 1997)

Professional Education


  • Ph.D., Cornell University, Weill Graduate School of Medicine, Molecular and Cellular Biology (2007)
  • B.A., New York University, Anthropology (1998)

Current Research and Scholarly Interests


Our lab studies how intricate control of gene expression and cell signaling is regulated on a minute-by-minute basis to give rise to the remarkable diversity of cell types and tissue morphology that form the living blueprints of developing organisms. Work in the Barna lab is presently split into two main research efforts. The first is investigating ribosome-mediated control of gene expression genome-wide in space and time during cellular differentiation and organismal development. This research is opening a new field of study in which we apply sophisticated mass spectrometry, computational biology, genomics, and developmental genetics, to characterize a ribosome code to gene expression. Our research has shown that not all of the millions of ribosomes within a cell are the same and that ribosome heterogeneity can diversify how genomes are translated into proteomes. In particular, we seek to address whether fundamental aspects of gene regulation are controlled by ribosomes harboring a unique activity or composition that are tuned to translating specific transcripts by virtue of RNA regulatory elements embedded within their 5’UTRs. The second research effort is centered on employing state-of-the-art live cell imaging to visualize cell signaling and cellular control of organogenesis. This research has led to the realization of a novel means of cell-cell communication dependent on a dense network of actin-based cellular extension within developing organs that interconnect and facilitate the precise transmission of molecular information between cells. We apply and create bioengineering tools to manipulate such cellular interactions and signaling in-vivo.

2023-24 Courses


Stanford Advisees


All Publications


  • Optogenetic manipulation of cellular communication using engineered myosin motors. Nature cell biology Zhang, Z., Denans, N., Liu, Y., Zhulyn, O., Rosenblatt, H. D., Wernig, M., Barna, M. 2021

    Abstract

    Cells achieve highly efficient and accurate communication through cellular projections such as neurites and filopodia, yet there is a lack of genetically encoded tools that can selectively manipulate their composition and dynamics. Here, we present a versatile optogenetic toolbox of artificial multi-headed myosin motors that can move bidirectionally within long cellular extensions and allow for the selective transport of GFP-tagged cargo with light. Utilizing these engineered motors, we could transport bulky transmembrane receptors and organelles as well as actin remodellers to control the dynamics of both filopodia and neurites. Using an optimized in vivo imaging scheme, we further demonstrate that, upon limb amputation in axolotls, a complex array of filopodial extensions is formed. We selectively modulated these filopodial extensions and showed that they re-establish a Sonic Hedgehog signalling gradient during regeneration. Considering the ubiquitous existence of actin-based extensions, this toolbox shows the potential to manipulate cellular communication with unprecedented accuracy.

    View details for DOI 10.1038/s41556-020-00625-2

    View details for PubMedID 33526902

  • Gene- and Species-Specific Hox mRNA Translation by Ribosome Expansion Segments. Molecular cell Leppek, K. n., Fujii, K. n., Quade, N. n., Susanto, T. T., Boehringer, D. n., Lenarčič, T. n., Xue, S. n., Genuth, N. R., Ban, N. n., Barna, M. n. 2020

    Abstract

    Ribosomes have been suggested to directly control gene regulation, but regulatory roles for ribosomal RNA (rRNA) remain largely unexplored. Expansion segments (ESs) consist of multitudes of tentacle-like rRNA structures extending from the core ribosome in eukaryotes. ESs are remarkably variable in sequence and size across eukaryotic evolution with largely unknown functions. In characterizing ribosome binding to a regulatory element within a Homeobox (Hox) 5' UTR, we identify a modular stem-loop within this element that binds to a single ES, ES9S. Engineering chimeric, "humanized" yeast ribosomes for ES9S reveals that an evolutionary change in the sequence of ES9S endows species-specific binding of Hoxa9 mRNA to the ribosome. Genome editing to site-specifically disrupt the Hoxa9-ES9S interaction demonstrates the functional importance for such selective mRNA-rRNA binding in translation control. Together, these studies unravel unexpected gene regulation directly mediated by rRNA and how ribosome evolution drives translation of critical developmental regulators.

    View details for DOI 10.1016/j.molcel.2020.10.023

    View details for PubMedID 33202249

  • The Discovery of Ribosome Heterogeneity and Its Implications for Gene Regulation and Organismal Life. Molecular cell Genuth, N. R., Barna, M. 2018; 71 (3): 364–74

    Abstract

    The ribosome has recently transitioned from being viewed as a passive, indiscriminate machine to a more dynamic macromolecular complex with specialized roles in the cell. Here, we discuss the historical milestones from the discovery of the ribosome itself to how this ancient machinery has gained newfound appreciation as a more regulatory participant in the central dogma of gene expression. The first emerging examples of direct changes in ribosome composition at the RNA and protein level, coupled with an increased awareness of the role individual ribosomal components play in the translation of specific mRNAs, is opening a new field of study centered on ribosome-mediated control of gene regulation. In this Perspective, we discuss our current understanding of the known functions for ribosome heterogeneity, including specialized translation of individual transcripts, and its implications for the regulation and expression of key gene regulatory networks. In addition, we suggest what the crucial next steps are to ascertain the extent of ribosome heterogeneity and specialization and its importance for regulation of the proteome within subcellular space, across different cell types, and during multi-cellular organismal development.

    View details for PubMedID 30075139

  • The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and Heterogeneity. Cell Simsek, D., Tiu, G. C., Flynn, R. A., Byeon, G. W., Leppek, K., Xu, A. F., Chang, H. Y., Barna, M. 2017; 169 (6): 1051-1065 e18

    Abstract

    During eukaryotic evolution, ribosomes have considerably increased in size, forming a surface-exposed ribosomal RNA (rRNA) shell of unknown function, which may create an interface for yet uncharacterized interacting proteins. To investigate such protein interactions, we establish a ribosome affinity purification method that unexpectedly identifies hundreds of ribosome-associated proteins (RAPs) from categories including metabolism and cell cycle, as well as RNA- and protein-modifying enzymes that functionally diversify mammalian ribosomes. By further characterizing RAPs, we discover the presence of ufmylation, a metazoan-specific post-translational modification (PTM), on ribosomes and define its direct substrates. Moreover, we show that the metabolic enzyme, pyruvate kinase muscle (PKM), interacts with sub-pools of endoplasmic reticulum (ER)-associated ribosomes, exerting a non-canonical function as an RNA-binding protein in the translation of ER-destined mRNAs. Therefore, RAPs interconnect one of life's most ancient molecular machines with diverse cellular processes, providing an additional layer of regulatory potential to protein expression.

    View details for DOI 10.1016/j.cell.2017.05.022

    View details for PubMedID 28575669

  • Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide. Molecular cell Shi, Z. n., Fujii, K. n., Kovary, K. M., Genuth, N. R., Röst, H. L., Teruel, M. N., Barna, M. n. 2017

    Abstract

    Emerging studies have linked the ribosome to more selective control of gene regulation. However, an outstanding question is whether ribosome heterogeneity at the level of core ribosomal proteins (RPs) exists and enables ribosomes to preferentially translate specific mRNAs genome-wide. Here, we measured the absolute abundance of RPs in translating ribosomes and profiled transcripts that are enriched or depleted from select subsets of ribosomes within embryonic stem cells. We find that heterogeneity in RP composition endows ribosomes with differential selectivity for translating subpools of transcripts, including those controlling metabolism, cell cycle, and development. As an example, mRNAs enriched in binding to RPL10A/uL1-containing ribosomes are shown to require RPL10A/uL1 for their efficient translation. Within several of these transcripts, this level of regulation is mediated, at least in part, by internal ribosome entry sites. Together, these results reveal a critical functional link between ribosome heterogeneity and the post-transcriptional circuitry of gene expression.

    View details for PubMedID 28625553

  • RNA regulons in Hox 5' UTRs confer ribosome specificity to gene regulation. Nature Xue, S., Tian, S., Fujii, K., Kladwang, W., Das, R., Barna, M. 2015; 517 (7532): 33-38

    Abstract

    Emerging evidence suggests that the ribosome has a regulatory function in directing how the genome is translated in time and space. However, how this regulation is encoded in the messenger RNA sequence remains largely unknown. Here we uncover unique RNA regulons embedded in homeobox (Hox) 5' untranslated regions (UTRs) that confer ribosome-mediated control of gene expression. These structured RNA elements, resembling viral internal ribosome entry sites (IRESs), are found in subsets of Hox mRNAs. They facilitate ribosome recruitment and require the ribosomal protein RPL38 for their activity. Despite numerous layers of Hox gene regulation, these IRES elements are essential for converting Hox transcripts into proteins to pattern the mammalian body plan. This specialized mode of IRES-dependent translation is enabled by an additional regulatory element that we term the translation inhibitory element (TIE), which blocks cap-dependent translation of transcripts. Together, these data uncover a new paradigm for ribosome-mediated control of gene expression and organismal development.

    View details for DOI 10.1038/nature14010

    View details for PubMedID 25409156

  • Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature Sanders, T. A., Llagostera, E., Barna, M. 2013; 497 (7451): 628-632

    Abstract

    The ability of signalling proteins to traverse tissues containing tightly packed cells is of fundamental importance for cell specification and tissue development; however, how this is achieved at a cellular level remains poorly understood. For more than a century, the vertebrate limb bud has served as a model for studying cell signalling during embryonic development. Here we optimize single-cell real-time imaging to delineate the cellular mechanisms for how signalling proteins, such as sonic hedgehog (SHH), that possess membrane-bound covalent lipid modifications traverse long distances within the vertebrate limb bud in vivo. By directly imaging SHH ligand production under native regulatory control in chick (Gallus gallus) embryos, our findings show that SHH is unexpectedly produced in the form of a particle that remains associated with the cell via long cytoplasmic extensions that span several cell diameters. We show that these cellular extensions are a specialized class of actin-based filopodia with novel cytoskeletal features that have not been previously described. Notably, particles containing SHH travel along these extensions with a net anterograde movement within the field of SHH cell signalling. We further show that in SHH-responding cells, specific subsets of SHH co-receptors, including cell adhesion molecule downregulated by oncogenes (CDO) and brother of CDO (BOC), actively distribute and co-localize in specific micro-domains within filopodial extensions, far from the cell body. Stabilized interactions are formed between filopodia containing SHH ligand and those containing co-receptors over a long range. These results suggest that contact-mediated release propagated by specialized filopodia contributes to the delivery of SHH at a distance. Together, these studies identify an important mode of communication between cells that considerably extends our understanding of ligand movement and reception during vertebrate tissue patterning.

    View details for DOI 10.1038/nature12157

    View details for PubMedID 23624372

  • Ribosome-Mediated Specificity in Hox mRNA Translation and Vertebrate Tissue Patterning CELL Kondrashov, N., Pusic, A., Stumpf, C. R., Shimizu, K., Hsieh, A. C., Xue, S., Ishijima, J., Shiroishi, T., Barna, M. 2011; 145 (3): 383-397

    Abstract

    Historically, the ribosome has been viewed as a complex ribozyme with constitutive rather than regulatory capacity in mRNA translation. Here we identify mutations of the Ribosomal Protein L38 (Rpl38) gene in mice exhibiting surprising tissue-specific patterning defects, including pronounced homeotic transformations of the axial skeleton. In Rpl38 mutant embryos, global protein synthesis is unchanged; however the translation of a select subset of Homeobox mRNAs is perturbed. Our data reveal that RPL38 facilitates 80S complex formation on these mRNAs as a regulatory component of the ribosome to confer transcript-specific translational control. We further show that Rpl38 expression is markedly enriched in regions of the embryo where loss-of-function phenotypes occur. Unexpectedly, a ribosomal protein (RP) expression screen reveals dynamic regulation of individual RPs within the vertebrate embryo. Collectively, these findings suggest that RP activity may be highly regulated to impart a new layer of specificity in the control of gene expression and mammalian development.

    View details for DOI 10.1016/j.cell.2011.03.028

    View details for Web of Science ID 000290022900008

    View details for PubMedID 21529712

  • Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency NATURE Barna, M., Pusic, A., Zollo, O., Costa, M., Kondrashov, N., Rego, E., Rao, P. H., Ruggero, D. 2008; 456 (7224): 971-U79

    Abstract

    The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA. Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Emu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc-overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap-dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (also known as Cdc2l and PITSLRE), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Emu-Myc/+ mice. When accurate translational control is re-established in Emu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level.

    View details for DOI 10.1038/nature07449

    View details for Web of Science ID 000261768300050

    View details for PubMedID 19011615

  • Evolutionarily divergent mTOR remodels translatome for tissue regeneration. Nature Zhulyn, O., Rosenblatt, H. D., Shokat, L., Dai, S., Kuzuoglu-Ozturk, D., Zhang, Z., Ruggero, D., Shokat, K. M., Barna, M. 2023

    Abstract

    An outstanding mystery in biology is why some species, such as the axolotl, can regenerate tissues whereas mammals cannot1. Here, we demonstrate that rapid activation of protein synthesis is a unique feature of the injury response critical for limb regeneration in the axolotl (Ambystoma mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components that are selectively activated at the level of translation from pre-existing messenger RNAs in response to injury. By contrast, protein synthesis is not activated in response to non-regenerative digit amputation in the mouse. We identify the mTORC1 pathway as a key upstream signal that mediates tissue regeneration and translational control in the axolotl. We discover unique expansions in mTOR protein sequence among urodele amphibians. By engineering an axolotl mTOR (axmTOR) in human cells, we show that these changes create a hypersensitive kinase that allows axolotls to maintain this pathway in a highly labile state primed for rapid activation. This change renders axolotl mTOR more sensitive to nutrient sensing, and inhibition of amino acid transport is sufficient to inhibit tissue regeneration. Together, these findings highlight the unanticipated impact of the translatome on orchestrating the early steps of wound healing in ahighly regenerative species and provide a missing link in our understanding of vertebrate regenerative potential.

    View details for DOI 10.1038/s41586-023-06365-1

    View details for PubMedID 37495694

  • Subfunctionalized expression drives evolutionary retention of ribosomal protein paralogs Rps27 and Rps27l in vertebrates. eLife Xu, A. F., Molinuevo, R., Fazzari, E., Tom, H., Zhang, Z., Menendez, J., Casey, K. M., Ruggero, D., Hinck, L., Pritchard, J. K., Barna, M. 2023; 12

    Abstract

    The formation of paralogs through gene duplication is a core evolutionary process. For paralogs that encode components of protein complexes such as the ribosome, a central question is whether they encode functionally distinct proteins, or whether they exist to maintain appropriate total expression of equivalent proteins. Here, we systematically tested evolutionary models of paralog function using the ribosomal protein paralogs Rps27 (eS27) and Rps27l (eS27L) as a case study. Evolutionary analysis suggests that Rps27 and Rps27l likely arose during whole-genome duplication(s) in a common vertebrate ancestor. We show that Rps27 and Rps27l have inversely correlated mRNA abundance across mouse cell types, with the highest Rps27 in lymphocytes and the highest Rps27l in mammary alveolar cells and hepatocytes. By endogenously tagging the Rps27 and Rps27l proteins, we demonstrate that Rps27- and Rps27l-ribosomes associate preferentially with different transcripts. Furthermore, murine Rps27 and Rps27l loss-of-function alleles are homozygous lethal at different developmental stages. However, strikingly, expressing Rps27 protein from the endogenous Rps27l locus or vice versa completely rescues loss-of-function lethality and yields mice with no detectable deficits. Together, these findings suggest that Rps27 and Rps27l are evolutionarily retained because their subfunctionalized expression patterns render both genes necessary to achieve the requisite total expression of two equivalent proteins across cell types. Our work represents the most in-depth characterization of a mammalian ribosomal protein paralog to date and highlights the importance of considering both protein function and expression when investigating paralogs.

    View details for DOI 10.7554/eLife.78695

    View details for PubMedID 37306301

  • Ribosome specialization in glioblastoma. Nature cell biology Genuth, N. R., Barna, M. 2022

    View details for DOI 10.1038/s41556-022-01000-z

    View details for PubMedID 36192633

  • A stem cell roadmap of ribosome heterogeneity reveals a function for RPL10A in mesoderm production. Nature communications Genuth, N. R., Shi, Z., Kunimoto, K., Hung, V., Xu, A. F., Kerr, C. H., Tiu, G. C., Oses-Prieto, J. A., Salomon-Shulman, R. E., Axelrod, J. D., Burlingame, A. L., Loh, K. M., Barna, M. 2022; 13 (1): 5491

    Abstract

    Recent findings suggest that the ribosome itself modulates gene expression. However, whether ribosomes change composition across cell types or control cell fate remains unknown. Here, employing quantitative mass spectrometry during human embryonic stem cell differentiation, we identify dozens of ribosome composition changes underlying cell fate specification. We observe upregulation of RPL10A/uL1-containing ribosomes in the primitive streak followed by progressive decreases during mesoderm differentiation. An Rpl10a loss-of-function allele in mice causes striking early mesodermal phenotypes, including posterior trunk truncations, and inhibits paraxial mesoderm production in culture. Ribosome profiling in Rpl10a loss-of-function mice reveals decreased translation of mesoderm regulators, including Wnt pathway mRNAs, which are also enriched on RPL10A/uL1-containing ribosomes. We further show that RPL10A/uL1 regulates canonical and non-canonical Wnt signaling during stem cell differentiation and in the developing embryo. These findings reveal unexpected ribosome composition modularity that controls differentiation and development through the specialized translation of key signaling networks.

    View details for DOI 10.1038/s41467-022-33263-3

    View details for PubMedID 36123354

  • The promises and pitfalls of specialized ribosomes. Molecular cell Barna, M., Karbstein, K., Tollervey, D., Ruggero, D., Brar, G., Greer, E. L., Dinman, J. D. 2022; 82 (12): 2179-2184

    Abstract

    The concept of specialized ribosomes has garnered equal amounts of interest and skepticism since it was first introduced. We ask researchers in the field to provide their perspective on the topic and weigh in on the evidence (or lack thereof) and what the future may bring.

    View details for DOI 10.1016/j.molcel.2022.05.035

    View details for PubMedID 35714581

  • The Mettl3 epitranscriptomic writer amplifies p53 stress responses. Molecular cell Raj, N., Wang, M., Seoane, J. A., Zhao, R. L., Kaiser, A. M., Moonie, N. A., Demeter, J., Boutelle, A. M., Kerr, C. H., Mulligan, A. S., Moffatt, C., Zeng, S. X., Lu, H., Barna, M., Curtis, C., Chang, H. Y., Jackson, P. K., Attardi, L. D. 2022

    Abstract

    The p53 transcription factor drives anti-proliferative gene expression programs in response to diverse stressors, including DNA damage and oncogenic signaling. Here, we seek to uncover new mechanisms through which p53 regulates gene expression using tandem affinity purification/mass spectrometry to identify p53-interacting proteins. This approach identified METTL3, an m6A RNA-methyltransferase complex (MTC) constituent, as a p53 interactor. We find that METTL3 promotes p53 protein stabilization and target gene expression in response to DNA damage and oncogenic signals, by both catalytic activity-dependent and independent mechanisms. METTL3 also enhances p53 tumor suppressor activity in invivo mouse cancer models and human cancer cells. Notably, METTL3 only promotes tumor suppression in the context of intact p53. Analysis of human cancer genome data further supports the notion that the MTC reinforces p53 function in human cancer. Together, these studies reveal a fundamental role for METTL3 in amplifying p53 signaling in response to cellular stress.

    View details for DOI 10.1016/j.molcel.2022.04.010

    View details for PubMedID 35512709

  • Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nature communications Leppek, K., Byeon, G. W., Kladwang, W., Wayment-Steele, H. K., Kerr, C. H., Xu, A. F., Kim, D. S., Topkar, V. V., Choe, C., Rothschild, D., Tiu, G. C., Wellington-Oguri, R., Fujii, K., Sharma, E., Watkins, A. M., Nicol, J. J., Romano, J., Tunguz, B., Diaz, F., Cai, H., Guo, P., Wu, J., Meng, F., Shi, S., Participants, E., Dormitzer, P. R., Solorzano, A., Barna, M., Das, R. 2022; 13 (1): 1536

    Abstract

    Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop an RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that highly structured "superfolder" mRNAs can be designed to improve both stability and expression with further enhancement through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.

    View details for DOI 10.1038/s41467-022-28776-w

    View details for PubMedID 35318324

  • Functional and structural basis of extreme conservation in vertebrate 5' untranslated regions. Nature genetics Byeon, G. W., Cenik, E. S., Jiang, L., Tang, H., Das, R., Barna, M. 2021

    Abstract

    The lack of knowledge about extreme conservation in genomes remains a major gap in our understanding of the evolution of gene regulation. Here, we reveal an unexpected role of extremely conserved 5' untranslated regions (UTRs) in noncanonical translational regulation that is linked to the emergence of essential developmental features in vertebrate species. Endogenous deletion of conserved elements within these 5' UTRs decreased gene expression, and extremely conserved 5' UTRs possess cis-regulatory elements that promote cell-type-specific regulation of translation. We further developed in-cell mutate-and-map (icM2), a new methodology that maps RNA structure inside cells. Using icM2, we determined that an extremely conserved 5' UTR encodes multiple alternative structures and that each single nucleotide within the conserved element maintains the balance of alternative structures important to control the dynamic range of protein expression. These results explain how extreme sequence conservation can lead to RNA-level biological functions encoded in the untranslated regions of vertebrate genomes.

    View details for DOI 10.1038/s41588-021-00830-1

    View details for PubMedID 33821006

  • VELCRO-IP RNA-seq reveals ribosome expansion segment function in translation genome-wide. Cell reports Leppek, K. n., Byeon, G. W., Fujii, K. n., Barna, M. n. 2021; 34 (3): 108629

    Abstract

    Roles for ribosomal RNA (rRNA) in gene regulation remain largely unexplored. With hundreds of rDNA units positioned across multiple loci, it is not possible to genetically modify rRNA in mammalian cells, hindering understanding of ribosome function. It remains elusive whether expansion segments (ESs), tentacle-like rRNA extensions that vary in sequence and size across eukaryotic evolution, may have functional roles in translation control. Here, we develop variable expansion segment-ligand chimeric ribosome immunoprecipitation RNA sequencing (VELCRO-IP RNA-seq), a versatile methodology to generate species-adapted ESs and to map specific mRNA regions across the transcriptome that preferentially associate with ESs. Application of VELCRO-IP RNA-seq to a mammalian ES, ES9S, identified a large array of transcripts that are selectively recruited to ribosomes via an ES. We further characterize a set of 5' UTRs that facilitate cap-independent translation through ES9S-mediated ribosome binding. Thus, we present a technology for studying the enigmatic ESs of the ribosome, revealing their function in gene-specific translation.

    View details for DOI 10.1016/j.celrep.2020.108629

    View details for PubMedID 33472078

  • Controlling tissue patterning by translational regulation of signaling transcripts through the core translation factor eIF3c. Developmental cell Fujii, K., Zhulyn, O., Byeon, G. W., Genuth, N. R., Kerr, C. H., Walsh, E. M., Barna, M. 2021; 56 (21): 2928-2937.e9

    Abstract

    Although gene expression is tightly regulated during embryonic development, the impact of translational control has received less experimental attention. Here, we find that eukaryotic translation initiation factor-3 (eIF3) is required for Shh-mediated tissue patterning. Analysis of loss-of-function eIF3 subunit c (Eif3c) mice reveal a unique sensitivity to the Shh receptor patched 1 (Ptch1) dosage. Genome-wide in vivo enhanced cross-linking immunoprecipitation sequence (eCLIP-seq) shows unexpected specificity for eIF3 binding to a pyrimidine-rich motif present in subsets of 5'-UTRs and a corresponding change in the translation of these transcripts by ribosome profiling in Eif3c loss-of-function embryos. We further find a transcript specific effect in Eif3c loss-of-function embryos whereby translation of Ptch1 through this pyrimidine-rich motif is specifically sensitive to eIF3 amount. Altogether, this work uncovers hidden specificity of housekeeping translation initiation machinery for the translation of key developmental signaling transcripts.

    View details for DOI 10.1016/j.devcel.2021.10.009

    View details for PubMedID 34752747

  • An rRNA variant to deal with stress. Nature microbiology Leppek, K., Barna, M. 2019; 4 (3): 382–83

    View details for PubMedID 30787478

  • Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nature medicine Xu, Y., Poggio, M., Jin, H. Y., Shi, Z., Forester, C. M., Wang, Y., Stumpf, C. R., Xue, L., Devericks, E., So, L., Nguyen, H. G., Griselin, A., Gordan, J. D., Umetsu, S. E., Reich, S. H., Worland, S. T., Asthana, S., Barna, M., Webster, K. R., Cunningham, J. T., Ruggero, D. 2019

    Abstract

    Cancer cells develop mechanisms to escape immunosurveillance, among which modulating the expression of immune suppressive messenger RNAs is most well-documented. However, how this is molecularly achieved remains largely unresolved. Here, we develop an in vivo mouse model of liver cancer to study oncogene cooperation in immunosurveillance. We show that MYC overexpression (MYCTg) synergizes with KRASG12D to induce an aggressive liver tumor leading to metastasis formation and reduced mouse survival compared with KRASG12D alone. Genome-wide ribosomal footprinting of MYCTg;KRASG12 tumors compared with KRASG12D revealed potential alterations in translation of mRNAs, including programmed-death-ligand 1 (PD-L1). Further analysis revealed that PD-L1 translation is repressed in KRASG12D tumors by functional, non-canonical upstream open reading frames in its 5' untranslated region, which is bypassed in MYCTg;KRASG12D tumors to evade immune attack. We show that this mechanism of PD-L1 translational upregulation was effectively targeted by a potent, clinical compound that inhibits eIF4E phosphorylation, eFT508, which reverses the aggressive and metastatic characteristics of MYCTg;KRASG12D tumors. Together, these studies reveal how immune-checkpoint proteins are manipulated by distinct oncogenes at the level of mRNA translation, which can be exploited for new immunotherapies.

    View details for PubMedID 30643286

  • RPS25 is required for efficient RAN translation of C9orf72 and other neurodegenerative disease-associated nucleotide repeats. Nature neuroscience Yamada, S. B., Gendron, T. F., Niccoli, T. n., Genuth, N. R., Grosely, R. n., Shi, Y. n., Glaria, I. n., Kramer, N. J., Nakayama, L. n., Fang, S. n., Dinger, T. J., Thoeng, A. n., Rocha, G. n., Barna, M. n., Puglisi, J. D., Partridge, L. n., Ichida, J. K., Isaacs, A. M., Petrucelli, L. n., Gitler, A. D. 2019

    Abstract

    Nucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia. Unconventional translation (RAN translation) of C9orf72 repeats generates dipeptide repeat proteins that can cause neurodegeneration. We performed a genetic screen for regulators of RAN translation and identified small ribosomal protein subunit 25 (RPS25), presenting a potential therapeutic target for C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia and other neurodegenerative diseases caused by nucleotide repeat expansions.

    View details for DOI 10.1038/s41593-019-0455-7

    View details for PubMedID 31358992

  • Decoding the Function of Expansion Segments in Ribosomes. Molecular cell Fujii, K., Susanto, T. T., Saurabh, S., Barna, M. 2018; 72 (6): 1013

    Abstract

    Expansion segments (ESs) are enigmatic insertions within the eukaryotic ribosome, the longest of which resemble tentacle-like extensions that vary in length and sequence across evolution, with a largely unknown function. By selectively engineering rRNA in yeast, we find that one of the largest ESs, ES27L, has an unexpected function in translation fidelity. Ribosomes harboring a deletion in the distal portion of ES27L have increased amino acid misincorporation, as well as readthrough and frameshifting errors. Byemploying quantitative mass spectrometry, we further find that ES27L acts as an RNA scaffold to facilitate binding of a conserved enzyme, methionine amino peptidase (MetAP). We show that MetAP unexpectedly controls the accuracy of ribosome decoding, which is coupled to an increase in its enzymatic function through its interaction with ES27L. These findings reveal that variable ESs of the ribosome serve important functional roles and act as platforms for the binding of proteins that modulate translation across evolution.

    View details for PubMedID 30576652

  • Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nature reviews. Genetics Genuth, N. R., Barna, M. 2018

    Abstract

    Regulation of mRNA translation offers the opportunity to diversify the expression and abundance of proteins made from individual gene products in cells, tissues and organisms. Emerging evidence has highlighted variation in the composition and activity of several large, highly conserved translation complexes as a means to differentially control gene expression. Heterogeneity and specialized functions of individual components of the ribosome and of the translation initiation factor complexes eIF3 and eIF4F, which are required for recruitment of the ribosome to the mRNA 5' untranslated region, have been identified. In this Review, we summarize the evidence for selective mRNA translation by components of these macromolecular complexes as a means to dynamically control the translation of the proteome in time and space. We further discuss the implications of this form of gene expression regulation for a growing number of human genetic disorders associated with mutations in the translation machinery.

    View details for PubMedID 29725087

  • An emerging role for the ribosome as a nexus for post-translational modifications. Current opinion in cell biology Simsek, D., Barna, M. 2017; 45: 92-101

    Abstract

    The ribosome is one of life's most ancient molecular machines that has historically been viewed as a backstage participant in gene regulation, translating the genetic code across all kingdoms of life in a rote-like fashion. However, recent studies suggest that intrinsic components of the ribosome can be regulated and diversified as a means to intricately control the expression of the cellular proteome. In this review, we discuss advances in the characterization of ribosome post-translational modifications (PTMs) from past to present. We specifically focus on emerging examples of ribosome phosphorylation and ubiquitylation, which are beginning to showcase that PTMs of the ribosome are versatile, may have functional consequences for translational control, and are intimately linked to human disease. We further highlight the key questions that remain to be addressed to gain a more complete picture of the array of ribosome PTMs and the upstream enzymes that control them, which may endow ribosomes with greater regulatory potential in gene regulation and control of cellular homeostasis.

    View details for DOI 10.1016/j.ceb.2017.02.010

    View details for PubMedID 28445788

  • The p53 family members have distinct roles during mammalian embryonic development. Cell death and differentiation Van Nostrand, J. L., Bowen, M. E., Vogel, H., Barna, M., Attardi, L. D. 2017

    Abstract

    The p53 tumor suppressor is a member of a multi-protein family, including the p63 and p73 transcription factors. These proteins can bind to the same consensus sites in DNA and activate the same target genes, suggesting that there could be functional redundancy between them. Indeed, double mutant mice heterozygous for any two family member-encoding genes display enhanced cancer phenotypes relative to single heterozygous mutants. However, whether the family members play redundant roles during embryonic development has remained largely unexplored. Although p53(-/-); p73(-/-) mice are born and manifest phenotypes characteristic of each of the single mutants, the consequences of combined deficiency of p63 and either p53 or p73 have not been elucidated. To examine the functional overlap of p53 family members during development, we bred and analyzed compound mutant embryo phenotypes. We discovered that double knockout embryos and five allele knockout embryos only displayed obvious defects accounted for by loss of single p53 family members. Surprisingly, at mid-gestation (E11), we identified a single viable triple knockout embryo that appeared grossly normal. Together, these results suggest that the p53 family is not absolutely required for early embryogenesis and that p53 family members are largely non-redundant during early development.

    View details for DOI 10.1038/cdd.2016.128

    View details for PubMedID 28211873

  • Pervasive translational regulation of the cell signalling circuitry underlies mammalian development NATURE COMMUNICATIONS Fujii, K., Shi, Z., Zhulyn, O., Denans, N., Barna, M. 2017; 8

    Abstract

    The degree and dynamics of translational control during mammalian development remain poorly understood. Here we monitored translation of the mammalian genome as cells become specified and organize into tissues in vivo. This identified unexpected and pervasive translational regulation of most of the core signalling circuitry including Shh, Wnt, Hippo, PI3K and MAPK pathways. We further identify and functionally characterize a complex landscape of upstream open reading frames (uORFs) across 5'-untranslated regions (UTRs) of key signalling components. Focusing on the Shh pathway, we demonstrate the importance of uORFs within the major SHH receptor, Ptch1, in control of cell signalling and neuronal differentiation. Finally, we show that the expression of hundreds of mRNAs underlying critical tissue-specific developmental processes is largely regulated at the translation but not transcript levels. Altogether, this work reveals a new layer of translational control to major signalling components and gene regulatory networks that diversifies gene expression spatially across developing tissues.

    View details for DOI 10.1038/ncomms14443

    View details for Web of Science ID 000393859100001

    View details for PubMedID 28195124

  • Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nature reviews. Molecular cell biology Leppek, K. n., Das, R. n., Barna, M. n. 2017

    Abstract

    RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5' untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5' UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms.

    View details for PubMedID 29165424

  • Translating the Genome in Time and Space: Specialized Ribosomes, RNA Regulons, and RNA-Binding Proteins. Annual review of cell and developmental biology Shi, Z., Barna, M. 2015; 31: 31-54

    Abstract

    A central question in cell and developmental biology is how the information encoded in the genome is differentially interpreted to generate a diverse array of cell types. A growing body of research on posttranscriptional gene regulation is revealing that both global protein synthesis rates and the translation of specific mRNAs are highly specialized in different cell types. How this exquisite translational regulation is achieved is the focus of this review. Two levels of regulation are discussed: the translation machinery and cis-acting elements within mRNAs. Recent evidence shows that the ribosome itself directs how the genome is translated in time and space and reveals surprising functional specificity in individual components of the core translation machinery. We are also just beginning to appreciate the rich regulatory information embedded in the untranslated regions of mRNAs, which direct the selective translation of transcripts. These hidden RNA regulons may interface with a myriad of RNA-binding proteins and specialized translation machinery to provide an additional layer of regulation to how transcripts are spatiotemporally expressed. Understanding this largely unexplored world of translational codes hardwired in the core translation machinery is an exciting new research frontier fundamental to our understanding of gene regulation, organismal development, and evolution. Expected final online publication date for the Annual Review of Cell and Developmental Biology Volume 31 is November 7, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.

    View details for DOI 10.1146/annurev-cellbio-100814-125346

    View details for PubMedID 26443190

  • Cis-regulatory RNA elements that regulate specialized ribosome activity. RNA biology Xue, S., Barna, M. 2015: 0

    Abstract

    Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.

    View details for DOI 10.1080/15476286.2015.1085149

    View details for PubMedID 26327194

  • Differential Requirements for eIF4E Dose in Normal Development and Cancer CELL Truitt, M. L., Conn, C. S., Shi, Z., Pang, X., Tokuyasu, T., Coady, A. M., Seo, Y., Barna, M., Ruggero, D. 2015; 162 (1): 59-71

    Abstract

    eIF4E, the major cap-binding protein, has long been considered limiting for translating the mammalian genome. However, the eIF4E dose requirement at an organismal level remains unexplored. By generating an Eif4e haploinsufficient mouse, we found that a 50% reduction in eIF4E expression, while compatible with normal development and global protein synthesis, significantly impeded cellular transformation. Genome-wide translational profiling uncovered a translational program induced by oncogenic transformation and revealed a critical role for the dose of eIF4E, specifically in translating a network of mRNAs enriched for a unique 5' UTR signature. In particular, we demonstrate that the dose of eIF4E is essential for translating mRNAs that regulate reactive oxygen species, fueling transformation and cancer cell survival in vivo. Our findings indicate eIF4E is maintained at levels in excess for normal development that are hijacked by cancer cells to drive a translational program supporting tumorigenesis.

    View details for DOI 10.1016/j.cell.2015.05.049

    View details for Web of Science ID 000357542300009

    View details for PubMedID 26095252

  • The ribosome prophecy. Nature reviews. Molecular cell biology Barna, M. 2015; 16 (5): 268

    View details for DOI 10.1038/nrm3993

    View details for PubMedID 25907611

  • Specialized filopodia: at the 'tip' of morphogen transport and vertebrate tissue patterning. Current opinion in genetics & development Fairchild, C. L., Barna, M. 2014; 27C: 67-73

    Abstract

    For over a century, biologists have strived to unravel the mechanisms that establish how cells are informed of their position in the embryo and differentiate to give rise to complex organs and structures. However, the historical idea that one predominant mode of ligand transport, largely accounted for by free diffusion, can explain how all signaling molecules, known as morphogens, control tissue patterning has greatly hindered our ability to fully appreciate the complexities driving the delivery and reception of signaling molecules at a distance. In reality, a cell's shape, morphology, and location change continuously as development progresses. Thus, cellular context poses distinct challenges for morphogen transport in each unique cellular environment. Emerging studies reveal that some cells overcome such obstacles in an unexpected manner: via long, cellular projections, or specialized filopodia, that link distant cells and traffic signaling components. Here, we will review recent findings describing specialized filopodia and discuss the potential mechanisms and implications for filopodia-based long-range cell signaling and communication, particularly within the developing vertebrate embryo.

    View details for DOI 10.1016/j.gde.2014.03.013

    View details for PubMedID 24907447

  • Tailor Made Protein Synthesis for HSCs. Cell stem cell Barna, M., Ruggero, D. 2014; 14 (4): 423-4

    Abstract

    Translation control is a prevalent form of gene expression regulation in developmental and stem cell biology. A recent paper by Signer et al. (2014) measures protein synthesis in the mouse hematopoietic compartment and reveals the importance of diminished protein production for maintaining hematopoietic stem cell function and restraining oncogenic potential.

    View details for DOI 10.1016/j.stem.2014.03.011

    View details for PubMedID 24702992

  • When the going gets tough: scientists' personal challenges. Cell Lengerke, C. n., Fernandez-Capetillo, O. n., Tolic-Norrelykke, I. n., Barna, M. n., Coleman, T. n., Zamboni, D. n. 2014; 159 (2): 225–26

    View details for PubMedID 25436265

  • Ribosomes take control PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Barna, M. 2013; 110 (1): 9-10

    View details for DOI 10.1073/pnas.1218764110

    View details for Web of Science ID 000313630300020

    View details for PubMedID 23243144

    View details for PubMedCentralID PMC3538271

  • Specialized ribosomes: a new frontier in gene regulation and organismal biology NATURE REVIEWS MOLECULAR CELL BIOLOGY Xue, S., Barna, M. 2012; 13 (6): 355-369

    Abstract

    Historically, the ribosome has been viewed as a complex ribozyme with constitutive rather than intrinsic regulatory capacity in mRNA translation. However, emerging studies reveal that ribosome activity may be highly regulated. Heterogeneity in ribosome composition resulting from differential expression and post-translational modifications of ribosomal proteins, ribosomal RNA (rRNA) diversity and the activity of ribosome-associated factors may generate 'specialized ribosomes' that have a substantial impact on how the genomic template is translated into functional proteins. Moreover, constitutive components of the ribosome may also exert more specialized activities by virtue of their interactions with specific mRNA regulatory elements such as internal ribosome entry sites (IRESs) or upstream open reading frames (uORFs). Here we discuss the hypothesis that intrinsic regulation by the ribosome acts to selectively translate subsets of mRNAs harbouring unique cis-regulatory elements, thereby introducing an additional level of regulation in gene expression and the life of an organism.

    View details for DOI 10.1038/nrm3359

    View details for Web of Science ID 000304354100011

    View details for PubMedID 22617470

  • Visualization of cartilage formation: Insight into cellular properties of skeletal progenitors and chondrodysplasia syndromes DEVELOPMENTAL CELL Barna, M., Niswander, L. 2007; 12 (6): 931-941

    Abstract

    The cellular events underlying skeletal morphogenesis and the formation of cartilage templates are largely unknown. We generated an imaging system to dynamically visualize limb mesenchymal cells undergoing successive phases in cartilage formation and to delineate the cellular function of key regulators of chondrogenesis found mutated in chondrodysplasia syndromes. We uncovered an unsuspected role for Sox9 in control of cell morphology, independent from its major downstream target ColIIa, critically required for the mesenchyme-to-chondrocyte transition. In contrast, Bmp signaling regulates a cellular program we term "compaction" in which mesenchymal cells acquire a cohesive cell behavior required to delineate the boundaries and size of cartilage elements. Moreover, we visualized labeled progenitor cells from different regions of the limb bud and identified unique cellular properties that may direct their contribution toward specific skeletal elements such as the humerus or digits. These findings shed light on the cellular basis for chondrodysplasia syndromes and formation of the vertebrate skeleton.

    View details for DOI 10.1016/j.devcel.2007.04.016

    View details for Web of Science ID 000247119700013

    View details for PubMedID 17543865

  • Gli3 and Plzf cooperate in proximal limb patterning at early stages of limb development NATURE Barna, M., Pandolfi, P. P., Niswander, L. 2005; 436 (7048): 277-281

    Abstract

    The vertebrate limb initially develops as a bud of mesenchymal cells that subsequently aggregate in a proximal to distal (P-D) sequence to give rise to cartilage condensations that prefigure all limb skeletal components. Of the three cardinal limb axes, the mechanisms that lead to establishment and patterning of skeletal elements along the P-D axis are the least understood. Here we identify a genetic interaction between Gli3 (GLI-Kruppel family member 3) and Plzf (promyelocytic leukaemia zinc finger, also known as Zbtb16 and Zfp145), which is required specifically at very early stages of limb development for all proximal cartilage condensations in the hindlimb (femur, tibia, fibula). Notably, distal condensations comprising the foot are relatively unperturbed in Gli3(-/-);Plzf(-/-) mouse embryos. We demonstrate that the cooperative activity of Gli3 and Plzf establishes the correct temporal and spatial distribution of chondrocyte progenitors in the proximal limb-bud independently of known P-D patterning markers and overall limb-bud size. Moreover, the limb defects in Gli3(-/-);Plzf(-/-) embryos correlate with the transient death of a specific subset of proximal mesenchymal cells that express bone morphogenetic protein receptor, type 1B (Bmpr1b) at the onset of limb development. These findings suggest that the development of proximal and distal skeletal elements is distinctly regulated early during limb-bud formation. The initial division of the vertebrate limb into two distinct molecular domains is consistent with fossil evidence indicating that the upper and lower extremities of the limb have different evolutionary origins.

    View details for DOI 10.1038/nature03801

    View details for Web of Science ID 000230459500045

    View details for PubMedID 16015334

  • Essential role of Plzf in maintenance of spermatogonial stem cells NATURE GENETICS Costoya, J. A., Hobbs, R. M., Barna, M., Cattoretti, G., Manova, K., Sukhwani, M., Orwig, K. E., Wolgemuth, D. J., Pandolfi, P. P. 2004; 36 (6): 653-659

    Abstract

    Little is known of the molecular mechanisms whereby spermatogonia, mitotic germ cells of the testis, self-renew and differentiate into sperm. Here we show that Zfp145, encoding the transcriptional repressor Plzf, has a crucial role in spermatogenesis. Zfp145 expression was restricted to gonocytes and undifferentiated spermatogonia and was absent in tubules of W/W(v) mutants that lack these cells. Mice lacking Zfp145 underwent a progressive loss of spermatogonia with age, associated with increases in apoptosis and subsequent loss of tubule structure but without overt differentiation defects or loss of the supporting Sertoli cells. Spermatogonial transplantation experiments revealed a depletion of spermatogonial stem cells in the adult. Microarray analysis of isolated spermatogonia from Zfp145-null mice before testis degeneration showed alterations in the expression profile of genes associated with spermatogenesis. These results identify Plzf as a spermatogonia-specific transcription factor in the testis that is required to regulate self-renewal and maintenance of the stem cell pool.

    View details for DOI 10.1038/ng1367

    View details for Web of Science ID 000221763700026

    View details for PubMedID 15156143

  • Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling DEVELOPMENTAL CELL Barna, M., Merghoub, T., Costoya, J. A., Ruggero, D., Branford, M., Bergia, A., Samori, B., Pandolfi, P. P. 2002; 3 (4): 499-510

    Abstract

    The molecular mechanisms that regulate coordinated and colinear activation of Hox gene expression in space and time remain poorly understood. Here we demonstrate that Plzf regulates the spatial expression of the AbdB HoxD gene complex by binding to regulatory elements required for restricted Hox gene expression and can recruit histone deacetylases to these sites. We show by scanning forced microscopy that Plzf, via homodimerization, can form DNA loops and bridge distant Plzf binding sites located within HoxD gene regulatory elements. Furthermore, we demonstrate that Plzf physically interacts with Polycomb proteins on DNA. We propose a model by which the balance between activating morphogenic signals and transcriptional repressors such as Plzf establishes proper Hox gene expression boundaries in the limb bud.

    View details for Web of Science ID 000178629300008

    View details for PubMedID 12408802

  • Plzf regulates limb and axial skeletal patterning NATURE GENETICS Barna, M., Hawe, N., Niswander, L., Pandolfi, P. P. 2000; 25 (2): 166-172

    Abstract

    The promyelocytic leukaemia zinc finger (Plzf) protein (encoded by the gene Zfp145) belongs to the POZ/zinc-finger family of transcription factors. Here we generate Zfp145-/- mice and show that Plzf is essential for patterning of the limb and axial skeleton. Plzf inactivation results in patterning defects affecting all skeletal structures of the limb, including homeotic transformations of anterior skeletal elements into posterior structures. We demonstrate that Plzf acts as a growth-inhibitory and pro-apoptotic factor in the limb bud. The expression of members of the abdominal b (Abdb) Hox gene complex, as well as genes encoding bone morphogenetic proteins (Bmps), is altered in the developing limb of Zfp145-/- mice. Plzf regulates the expression of these genes in the absence of aberrant polarizing activity and independently of known patterning genes. Zfp145-/- mice also exhibit anterior-directed homeotic transformation throughout the axial skeleton with associated alterations in Hox gene expression. Plzf is therefore a mediator of anterior-to-posterior (AP) patterning in both the axial and appendicular skeleton and acts as a regulator of Hox gene expression.

    View details for Web of Science ID 000087459200014

    View details for PubMedID 10835630

  • Interleukin-12 promotes recovery from viral encephalitis VIRAL IMMUNOLOGY Komatsu, T., Barna, M., Reiss, C. S. 1997; 10 (1): 35-47

    Abstract

    Infusion of interleukin-12 (IL-12) enhances recovery from lethal experimental vesicular stomatitis virus (VSV) infection of the central nervous system (CNS). Interleukin-12 treatment resulted in: 1) increased survival frequency; 2) faster recovery from weight loss; 3) substantially decreased VSV titers in brain homogenates and diminished immunohistochemical detection of VSV antigens in tissue sections; 4) earlier and increased CNS expression of types 1, 2, and 3 nitric oxide synthase (NOS) and both major histocompatibility complex (MHC) class I and class II antigens; 5) earlier and increased blood and CNS levels of tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). These results suggest that IL-12 enhances recovery from VSV infection of the CNS.

    View details for Web of Science ID A1997YA74900005

    View details for PubMedID 9095530

  • Activation of type III nitric oxide synthase in astrocytes following a neurotropic viral infection VIROLOGY Barna, M., Komatsu, T., Reiss, C. S. 1996; 223 (2): 331-343

    Abstract

    Type III nitric oxide synthase (type III NOS), also known as endothelial cell nitric oxide synthase (eNOS or ecNOS or NOS-3), is a constitutively expressed, calcium- and calmodulin-dependent, isoform of NOS. Its expression has been localized to endothelial cells and a subset of neurons in the brain. We report here that resident astrocytes of the central nervous system (CNS) of mice express type III NOS. Following an experimental neurotropic viral infection, the expression of type III NOS on reactive astrocytes increases substantially, predominantly in virally infected regions of the brain. This upregulation of type III NOS expression is also evident following cytokine treatment in vitro. The intraperitoneal (i.p.) administration of IL-12, a potent activator of IFN-gamma and TNF-alpha production, results in a substantial increase in type III NOS immunoreactivity in astrocytes. Cytokine-mediated activation of type III NOS is observed in vitro following exposure of a C6 glioma cells, which constitutively express type III NOS, to IL-12, IFN-gamma, and TNF-alpha treatment. We conclude that astrocytes of the murine CNS express type III NOS, which may be positively regulated by a number of cytokines following viral infection. Type III NOS expression by astrocytes represents a novel source of nitric oxide in the brain. It may be important in regulating perfusion and maintaining the blood-brain barrier. Given the intimate association of astrocytes with endothelial cells and neurons, increased activity of type III NOS following viral infection may be beneficial in inhibition of viral infection in neighboring cells.

    View details for Web of Science ID A1996VJ81000007

    View details for PubMedID 8806568

  • Sex differences in susceptibility to viral infection of the central nervous system JOURNAL OF NEUROIMMUNOLOGY Barna, M., Komatsu, T., Bi, Z. B., Reiss, C. S. 1996; 67 (1): 31-39

    Abstract

    We have characterized striking differences in recovery of male and female BALB/c and BALB/c-H-2dm2 (dm2) mice from an experimental neurotropic viral infection of the central nervous system (CNS). Following intranasal inoculation of vesicular stomatitis virus (VSV), assays of tissue homogenates from female mice produced lower viral titers. There was also a significant reduction in the spread of virus from the rostral to caudal end of the brain in female mice. Enhanced recovery by female mice of both strains in response to this viral insult correlates with increased levels of Nitric Oxide Synthase (NOS) types I, II, and III expression, an increased prevalence of reactive astrocytes, earlier and enhanced levels of expression of Major Histocompatibility Complex (MHC) class II molecules on astrocytes, endothelial and microglial cells, and increased T cell infiltration in the female BALB/c mouse. Taken together, these findings document sexual dimorphism in CNS immunity, and may provide an understanding of some of the mechanisms underlying many sex-biased diseases.

    View details for Web of Science ID A1996VA91900005

    View details for PubMedID 8707928

  • Interleukin-12: Promotes enhanced recovery from viral infection of neurons in the central nervous system Conference on Interleukin-12 - Cellular and Molecular Immunology of an Important Regulatory Cytokine Reiss, C. S., Komatsu, T., Barna, M., Bi, Z. B. NEW YORK ACAD SCIENCES. 1996: 257–265

    View details for Web of Science ID 000070968300027

    View details for PubMedID 8958937

  • Host immune response to vesicular stomatitis virus infection of the central nervous system in C57BL/6 mice VIRAL IMMUNOLOGY CHRISTIAN, A. Y., Barna, M., Bi, Z. B., Reiss, C. S. 1996; 9 (3): 195-205

    Abstract

    In this report, the kinetics of cellular inflammatory changes in the brain of vesicular stomatitis virus (VSV)-infected C57BL/6 (B6) mice was determined. The behavior and survival rate of infected B6 were carefully monitored each day. Infectious viral titers and VSV antigen distribution were determined at several time points during the course of infection. Strong activation of both astrocytes and microglia was observed after VSV infection. Induction of type II nitric oxide synthase (iNOS) was detected in activated microglia in the olfactory bulb (OB) starting at day 4 postinfection. Induced expression of major histocompatibility complex (MHC) molecules and rapid infiltration of both T cells and natural killer (NK) cells were detected in the VSV-infected CNS. Collectively, these data indicate that the response to CNS infection in B6 mice, which is often primarily Th1 in characteristics, is comparable to BALB/c mice, a strain that often shows a Th2-dominated immune response.

    View details for Web of Science ID A1996VK05900007

    View details for PubMedID 8890478

  • IL-12 PROMOTES ENHANCED RECOVERY FROM VESICULAR STOMATITIS-VIRUS INFECTION OF THE CENTRAL-NERVOUS-SYSTEM JOURNAL OF IMMUNOLOGY Bi, Z. B., QUANDT, P., Komatsu, T., Barna, M., Reiss, C. S. 1995; 155 (12): 5684-5689

    Abstract

    To investigate the role of a cytokine in host defense against the vesicular stomatitis virus (VSV) infection of the central nervous system (CNS), IL-12 was injected i.p. into groups of 10 BALB/c mice on days -1, 0, 1, 2, and 3 postinfection. Four days postinfection, mice were examined. IL-12 strongly enhanced immunity to VSV infection in the CNS as demonstrated by 1) decreased VSV titers in brain homogenate of IL-12-injected mice compared with those of controls; 2) increased expression of inducible nitric oxide synthase in the CNS; 3) enhanced expression of both MHC class I and class II Ags in the CNS; 4) increased T cell infiltration in the CNS, especially in the olfactory bulb; and 5) diminished VSV-induced apoptosis in olfactory bulb. No detrimental effect was observed even with the 200 ng/mouse dose of IL-12. Protective effects of IL-12 were dose dependent. Collectively, these results demonstrate that exogenously added IL-12, even when injected peripherally, significantly enhances recovery from VSV infection of the CNS.

    View details for Web of Science ID A1995TJ63100030

    View details for PubMedID 7499854

  • VESICULAR STOMATITIS-VIRUS INFECTION OF THE CENTRAL-NERVOUS-SYSTEM ACTIVATES BOTH INNATE AND ACQUIRED-IMMUNITY JOURNAL OF VIROLOGY Bi, Z. B., Barna, M., Komatsu, T., Reiss, C. S. 1995; 69 (10): 6466-6472

    Abstract

    Vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS) when intranasally applied. We have examined cellular inflammatory changes in the CNS following VSV infection. As early as 1 day postinfection (p.i.), astrocytes were activated in the olfactory bulb (OB). This was followed by activation of microglia, first observed in the OB at day 3 p.i. Expression of inducible nitric oxide synthase was observed in activated microglia in the OB at day 3 p.i., and increased inducible nitric oxide synthase expression coincided with decreased virus titers in tissue homogenates. Expression of major histocompatibility complex (MHC) class I molecules on astrocytes and microglial, endothelial, and ependymal cells was also rapidly induced and followed by induced expression of MHC class II molecules on astrocytes and microglial and endothelial cells. Consistent with the pattern of viral dissemination, MHC molecules were expressed temporally from the rostral-to-caudal direction. Infiltration of CD8+ cells was observed as early as 1 day p.i. in the OB. CD4+ cells were detected in the OB at day 4 p.i. Increasing T-cell infiltration coincided with decreased virus titers. In contrast, B-cell infiltration of the CNS was not detected until day 14 p.i., after the virus was cleared and mice were showing behavioral signs of recovery. Breakdown of the blood-brain barrier was detected beginning at day 6 p.i., was most severe at day 8 p.i., and was followed by full recovery. Collectively, these data show that both innate immunity (production of nitric oxide) and acquired immunity (expression of MHC molecules and T-cell infiltration) are activated following VSV infection in the CNS.

    View details for Web of Science ID A1995RU78400061

    View details for PubMedID 7545248