Bio-X


Showing 1-50 of 56 Results

  • Julia Palacios

    Julia Palacios

    Associate Professor of Statistics, of Biomedical Data Science and, by courtesy, of Biology

    BioDr. Palacios seek to provide statistically rigorous answers to concrete, data driven questions in evolutionary genetics and public health . My research involves probabilistic modeling of evolutionary forces and the development of computationally tractable methods that are applicable to big data problems. Past and current research relies heavily on the theory of stochastic processes, Bayesian nonparametrics and recent developments in machine learning and statistical theory for big data.

  • Daniel Palanker, PhD

    Daniel Palanker, PhD

    Professor of Ophthalmology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsInteractions of electric field and light with biological cells and tissues and their applications to imaging, diagnostics, therapeutics and prosthetics, primarily in ophthalmology.
    Specific fields of interest:
    Electronic retinal prosthesis;
    Electronic enhancement of tear secretion;
    Electronic control of blood vessels;
    Non-damaging retinal laser therapy;
    Ultrafast laser surgery;
    Interferometric imaging of neural signals;
    Cell transplantation and retinal plasticity.

  • Theo Palmer

    Theo Palmer

    Professor of Neurosurgery, Emeritus

    Current Research and Scholarly InterestsMembers of the Palmer Lab study the biology of neural stem cells in brain development and in the adult. Our primary goal is to understand how genes and environment synergize in influencing stem cell behavior during development and how mild genetic or environmental risk factors for disease may synergize in their detrimental effects on brain development or in the risk of neuronal loss in age-related degenerative disease.

  • Stephen Palumbi

    Stephen Palumbi

    Jane and Marshall Steel Jr. Professor of Marine Sciences, Professor of Oceans and of Biology

    Current Research and Scholarly InterestsWe're interested in ecological, evolutionary, and conservation questions related to marine (and sometimes terrestrial) organisms and ecosystems. We use evolutionary genetics and molecular ecology techniques, and our fieldwork takes us all around the world. Currently, we're studying coral diversity, the adaptive potential of corals in response to climate change, the movement of organisms between marine reserves, genetic changes in abalone in response to environmental.

  • Alan C. Pao

    Alan C. Pao

    Associate Professor of Medicine (Nephrology) and, by courtesy, of Urology

    Current Research and Scholarly InterestsWe are broadly interested in how the kidneys control salt, water, and electrolyte homeostasis in the body. Our disease focus is on kidney stone disease. We use cultured kidney cells, transgenic mice, human plasma/urine samples, and electronic health record data to study the pathogenesis of kidney stone disease. Our therapeutic focus is on the development of small molecule compounds that can be used for kidney stone prevention.

  • Peter Parham

    Peter Parham

    Professor of Structural Biology and, by courtesy, of Microbiology and Immunology

    Current Research and Scholarly InterestsThe Parham laboratory investigates the biology, genetics, and evolution of MHC class I molecules and NK cell receptors.

  • Victoria Parikh

    Victoria Parikh

    Assistant Professor of Medicine (Cardiovascular Medicine)

    BioDr. Parikh is a clinician scientist who cares for patients with and studies inherited (genetic) cardiovascular disease. She is the director of the Stanford Center for Inherited Cardiovascular Disease (SCICD) which is one of the largest of its kind in the country. SCICD integrates clinical and basic science with the expert care of patients with genetic cardiovascular conditions (e.g., cardiomyopathies, arrhythmias and vascular diseases). It provides cutting edge care for thousands of patients and families across the lifespan and integrates medical, surgical and genetics care. Our team includes physicians, nurses, advanced practice providers, genetic counselors, exercise physiologists and scientists.

    Dr. Parikh's own clinical practice and laboratory are focused on the genetics of cardiomyopathies and their associated arrhythmogenic substrates. She completed clinical cardiology fellowship at Stanford School of Medicine and her medical residency at the University of California, San Francisco. Funded by multiple research grants from the NIH, her lab seeks to identify novel mechanisms and therapeutic technologies for genetic cardiomyopathy as well as better understand the natural histories of patients affected by these diseases.

  • Jon Park, MD, FRCSC

    Jon Park, MD, FRCSC

    Saunders Family Professor

    Current Research and Scholarly InterestsNon-fusion dynamic spinal stabilization, artificial disc technologies, and regenerative spinal technologies.

  • Karen J. Parker, PhD

    Karen J. Parker, PhD

    Truong-Tan Broadcom Endowed Professor and Professor, by courtesy, of Comparative Medicine

    Current Research and Scholarly InterestsThe Parker Lab conducts research on the biology of social functioning in monkeys, typically developing humans, and patients with social impairments.

  • Josef Parvizi, MD, PhD

    Josef Parvizi, MD, PhD

    Professor of Neurology (Adult Neurology) and, by courtesy, of Neurosurgery

    BioDr. Parvizi completed his medical internship at Mayo Clinic, neurology training at Harvard, and subspecialty training in clinical neurophysiology and epilepsy at UCLA before joining the Department of Neurology and Neurological Sciences at Stanford in 2007. Dr. Parvizi directs the Stanford Program for Medication Resistant Epilepsies and specializes in surgical treatments of intractable focal epilepsies. Dr. Parvizi is the principal investigator in the Laboratory of Behavioral and Cognitive Neuroscience, where he leads a team of investigators to study the human brain. http://med.stanford.edu/parvizi-lab.html.

  • Anca M. Pasca, MD

    Anca M. Pasca, MD

    Assistant Professor of Pediatrics

    Current Research and Scholarly InterestsThe research focus of the lab is to understand molecular mechanisms underlying neurodevelopmental disorders associated with premature birth, neonatal and fetal brain injury with the long-term goal of translating the lab’s findings into therapeutics. The research team employs a multidisciplinary approach involving genetics, molecular and developmental neurobiology, animal models and neural cells differentiated from patient-derived induced pluripotent stem (iPS) cells. In particular, the lab is using a powerful 3D human brain-region specific organoid system developed at Stanford (Nature Methods, 2015; Nature Protocols, 2018) to ask questions about brain injury during development.

    https://www.neopascalab.org/

  • Sergiu P. Pasca

    Sergiu P. Pasca

    Kenneth T. Norris, Jr. Professor of Psychiatry and Behavioral Sciences and Bonnie Uytengsu and Family Director of the Stanford Brain Organogenesis Program

    Current Research and Scholarly InterestsA critical challenge in understanding the intricate programs underlying development, assembly and dysfunction of the human brain is the lack of direct access to intact, functioning human brain tissue for detailed investigation by imaging, recording, and stimulation.
    To address this, we are developing bottom-up approaches to generate and assemble, from multi-cellular components, human neural circuits in vitro and in vivo.
    We introduced the use of instructive signals for deriving from human pluripotent stem cells self-organizing 3D cellular structures named brain region-specific spheroids/organoids. We demonstrated that these cultures, such as the ones resembling the cerebral cortex, can be reliably derived across many lines and experiments, contain synaptically connected neurons and non-reactive astrocytes, and can be used to gain mechanistic insights into genetic and environmental brain disorders. Moreover, when maintained as long-term cultures, they recapitulate an intrinsic program of maturation that progresses towards postnatal stages.
    We also pioneered a modular system to integrate 3D brain region-specific organoids and study human neuronal migration and neural circuit formation in functional preparations that we named assembloids. We have actively applied these models in combination with studies in long-term ex vivo brain preparations to acquire a deeper understanding of human physiology, evolution and disease mechanisms.
    We have carved a unique research program that combines rigorous in vivo and in vitro neuroscience, stem cell and molecular biology approaches to construct and deconstruct previously inaccessible stages of human brain development and function in health and disease.
    We believe science is a community effort, and accordingly, we have been advancing the field by broadly and openly sharing our technologies with numerous laboratories around the world and organizing the primary research conference and the training courses in the area of cellular models of the human brain.

  • Zara Patel, MD

    Zara Patel, MD

    Professor of Otolaryngology - Head & Neck Surgery (OHNS)

    BioDr. Zara M. Patel is Director of Endoscopic Skull Base Surgery and a Professor of Otolaryngology and, by courtesy, of Neurosurgery at Stanford. She was born and raised in St. Louis, completed her MD at the Oregon Health and Sciences University in Portland, Oregon and completed her residency training in otolaryngology at Mount Sinai Medical Center in New York, NY. After pursuing fellowship training in rhinology and endoscopic skull base surgery at Stanford University, she was recruited to join the Emory University faculty in Atlanta in 2011. After four years, the rhinology division recruited her back to the West coast to rejoin the department here at Stanford University in 2015.

    Dr. Patel is an expert in advanced endoscopic sinus and skull base surgery. She treats patients with a wide variety of rhinologic complaints, including chronic sinus infection or inflammation, sinus disease that has failed medical therapy, sinus disease that has failed prior surgical therapy, cerebrospinal fluid leaks, benign and and malignant sinus and skull base tumors, as well as olfactory disorders.

    She has served as Chair of the Education Committee and Member of the Board of Directors for the American Rhinologic Society, is current Chair of the Rhinology and Allergy Education Committee for the American Academy of Otolaryngology - Head and Neck Surgery, and has developed a multitude of educational materials for both physicians and patients to help them better understand rhinologic disorders. She is passionate about educating patients to allow them to make the best decisions about their own care, leading to better outcomes.

    Dr. Patel has published widely in topics such as avoiding complications in endoscopic sinus surgery, chronic rhinosinusitis in the immunosuppressed patient population, new devices and techniques for endoscopic skull base surgery, and olfactory dysfunction. She continues to perform research in these areas, and is currently collaborating with neuroscientists and engineers to develop technology that she hopes will eventually help cure patients with smell loss, and potentially even help those with neurodegenerative disorders, such as Alzheimer's and Parkinson's disease.

  • John M. Pauly

    John M. Pauly

    Reid Weaver Dennis Professor

    BioInterests include medical imaging generally, and magnetic resonance imaging (MRI) in particular. Current efforts are focused on medical applications of MRI where real-time interactive imaging is important. Two examples are cardiac imaging, and the interactive guidance of interventional procedures. Specific interests include rapid methods for the excitation and acquisition of the MR signal, and the reconstruction of images from the data acquired using these approaches.

  • Kim Butts Pauly

    Kim Butts Pauly

    Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly InterestsWe are investigating and developing, and applying focused ultrasound in neuromodulation, blood brain barrier opening, and ablation for both neuro and body applications.

  • Jonathan Payne

    Jonathan Payne

    Dorrell William Kirby Professor, Senior Associate Dean for Faculty Affairs, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Biology,

    Current Research and Scholarly InterestsMy goal in research is to understand the interaction between environmental change and biological evolution using fossils and the sedimentary rock record. How does environmental change influence evolutionary and ecological processes? And conversely, how do evolutionary and ecological changes affect the physical environment? I work primarily on the marine fossil record over the past 550 million years.

  • Kabir Peay

    Kabir Peay

    Director of the Earth Systems Program, Associate Professor of Biology, of Earth System Science and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsOur lab studies the ecological processes that structure natural communities and the links between community structure and the cycling of nutrients and energy through ecosystems. We focus primarily on fungi, as these organisms are incredibly diverse and are the primary agents of carbon and nutrient cycling in terrestrial ecosystems. By working across multiple scales we hope to build a 'roots-to-biomes' understanding of plant-microbe symbiosis.

  • Donna Peehl, PhD

    Donna Peehl, PhD

    Professor (Research) of Urology, Emerita

    Current Research and Scholarly InterestsMy research focuses on the molecular and cellular biology of the human prostate. Developing realistic experimental models is a major goal, and primary cultures of prostatic epithelial and stromal cells are my main model system. Our discoveries are relevant to prevention, detection, diagnosis and treatment of benign and malignant prostatic diseases.

  • Mark Pegram

    Mark Pegram

    Susy Yuan-Huey Hung Professor

    Current Research and Scholarly InterestsMolecular mechanisms of targeted therapy resistance in breast and other cancers

  • Norbert Pelc

    Norbert Pelc

    Boston Scientific Applied Biomedical Engineering Professor and Professor of Radiology, Emeritus

    Current Research and Scholarly InterestsBroadly, Dr. Pelc is interested in the physics, engineering and mathematics of medical imaging, especially computed tomography, digital x-ray imaging, magnetic resonance imaging, and hybrid multimodality systems. His current research is concentrated in the development of computed tomography systems with higher image quality and dose efficiency, in the characterization of system performance, and in the development and validation of new clinical applications.

  • Gary Peltz

    Gary Peltz

    Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsThe laboratory develops and uses state of the art genomic methods to identify genetic factors affecting disease susceptibility, and to translate these findings into new treatments. We have developed a more efficient method for performing mouse genetic analysis, which has been used to analyze the genetic basis for 16 different biomedical traits. We are developing novel methods, and have developed a novel experimental platform that replaces mouse liver with functioning human liver tissue.

  • Jon-Paul Pepper, MD

    Jon-Paul Pepper, MD

    Associate Professor of Otolaryngology - Head & Neck Surgery (OHNS)

    Current Research and Scholarly InterestsFacial paralysis is a debilitating condition that affects thousands of people. Despite excellent surgical technique, we are currently limited by the regenerative capacity of the body. The mission of our research is to identify new treatments that improve current facial paralysis treatments. We do this by exploring the regenerative cues that the body uses to restore tissue after nerve injury, in particular through pathways of neurogenesis and nerve repair in small mammals.

  • Claudia Katharina Petritsch

    Claudia Katharina Petritsch

    Associate Professor (Research) of Neurosurgery

    Current Research and Scholarly InterestsThe Petritsch lab broadly investigates underlying causes for the intra-tumoral heterogeneity and immune suppression in brain tumors from a neuro-developmental perspective. Defective cell fate decisions fuel the intra-humoral heterogeneity and plasticity in human brain tumors and may contribute to immune suppression. We use patient-derived models as avatars to study how brain cells control the fate of their progeny, whereby we unravel novel points of vulnerabilities in brain tumor cells.

  • Dmitri Petrov

    Dmitri Petrov

    Michelle and Kevin Douglas Professor in the School of Humanities and Sciences

    Current Research and Scholarly InterestsEvolution of genomes and population genomics of adaptation and variation

  • Suzanne Pfeffer

    Suzanne Pfeffer

    Emma Pfeiffer Merner Professor of Medical Sciences

    Current Research and Scholarly InterestsThe major focus of our research is to understand the molecular basis of inherited Parkinson's Disease (PD). We focus on the LRRK2 kinase that is inappropriately activated in PD and how it phosphorylates Rab GTPases, blocking the formation of primary cilia in specific regions of the brain. The absence of primary cilia renders cells unable to carry out Hedgehog signaling that is critical for neuroprotective pathways that sustain dopamine neurons.

  • Adolf Pfefferbaum

    Adolf Pfefferbaum

    Professor of Psychiatry and Behavioral Sciences, Emeritus

    Current Research and Scholarly InterestsDevelopment and application of magnetic resonance imaging approaches for in vivo studies of human and animal brain integrity in neurodegenerative conditions, including alcoholism, HIV infection, Alzheimer's disease, and normal aging

  • Harold Westley Phillips

    Harold Westley Phillips

    Assistant Professor of Neurosurgery (Pediatric Neurosurgery)

    BioH. Westley Phillips, MD is an Assistant Professor of Neurosurgery at Stanford University where he is a neurosurgeon-scientist specializing in pediatric neurosurgery with a special interest in epilepsy. Dr. Phillips received his undergraduate degree at Yale University where he was a member of the Varsity Football Team and received a Fulbright Scholarship. He completed an MD at the Perelman School of Medicine at the University of Pennsylvania, graduating with a certificate of distinction in the Clinical Neuroscience Training Program. He completed neurosurgical residency at UCLA where he received 2 years of NIH funding to investigate the genetic underpinnings of epilepsy. He received fellowship training in pediatric epilepsy surgery and genetics research at Boston Children’s Hospital as well as pediatric neurosurgery at the University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh before his arrival at Stanford. At Stanford, Dr. Phillips leads a molecular genetics laboratory and has a particular interest in defining and further understanding somatic mosaicism and its role in epileptogenesis. He has published manuscripts in leading academic journals including Nature: Genetics, JAMA Neurology, Journal of Neuroscience, Scientific Reports, Epilepsia and Neurology. He is dedicated to improving the treatment and outcomes for children with drug resistant epilepsy through innovative research and cutting-edge surgical techniques.

  • Piero Pianetta

    Piero Pianetta

    Professor (Research) of Photon Science and of Electrical Engineering

    BioPianetta's research is directed towards understanding how the atomic and electronic structure of semiconductor interfaces impacts device technology pertaining to advanced semiconductors and photocathodes. His research includes the development of new analytical tools for these studies based on the use of synchrotron radiation. These include the development of ultrasensitive methods to analyze trace impurities on the surface of silicon wafers at levels as low as 1e-6 monolayer (~1e8 atoms/cm2) and the use of various photoelectron spectroscopies (X-ray photoemission, NEXAFS, X-ray standing waves and photoelectron diffraction) to determine the bonding and atomic structure at the interface between silicon and different passivating layers. Recent projects include the development of high resolution (~30nm) x-ray spectromicroscopy with applications to energy materials such as Li batteries.

  • Benjamin Pinsky

    Benjamin Pinsky

    Professor of Pathology, of Medicine (Infectious Diseases) and, by courtesy, of Pediatrics (Infectious Diseases)

    Current Research and Scholarly InterestsDevelopment and application of molecular assays for the diagnosis and management of infectious diseases.

  • Peter Pinsky

    Peter Pinsky

    Professor of Mechanical Engineering, Emeritus

    BioPinsky works in the theory and practice of computational mechanics with a particular interest in multiphysics problems in biomechanics. His work uses the close coupling of techniques for molecular, statistical and continuum mechanics with biology, chemistry and clinical science. Areas of current interest include the mechanics of human vision (ocular mechanics) and the mechanics of hearing. Topics in the mechanics of vision include the mechanics of transparency, which investigates the mechanisms by which corneal tissue self-organizes at the molecular scale using collagen-proteoglycan-ion interactions to explain the mechanical resilience and almost perfect transparency of the tissue and to provide a theoretical framework for engineered corneal tissue replacement. At the macroscopic scale, advanced imaging data is used to create detailed models of the 3-D organization of collagen fibrils and the results used to predict outcomes of clinical techniques for improving vision as well as how diseased tissue mechanically degrades. Theories for mass transport and reaction are being developed to model metabolic processes and swelling in tissue. Current topics in the hearing research arena include multiscale modeling of hair-cell mechanics in the inner ear including physical mechanisms for the activation of mechanically-gated ion channels. Supporting research addresses the mechanics of lipid bilayer cell membranes and their interaction with the cytoskeleton. Recent past research topics include computational acoustics for exterior, multifrequency and inverse problems; and multiscale modeling of transdermal drug delivery. Professor Pinsky currently serves as Chair of the Mechanics and Computation Group within the Department of Mechanical Engineering at Stanford.

  • Sharon Pitteri

    Sharon Pitteri

    Associate Professor (Research) of Radiology (Cancer Early Detection-Canary Center)

    Current Research and Scholarly InterestsThe Pitteri laboratory is focused on the discovery and validation of proteins that can be used as molecular indicators of risk, diagnosis, progression, and recurrence of cancer. Proteomic technologies, predominantly mass spectrometry, are used to identify proteins in the blood that are differentially regulated and/or post-translationally modified with disease state. Using human plasma samples, tumor tissue, cancer cell lines, and genetically engineered mouse models, the origins of these proteins are being investigated. A major goal of this research is to define novel molecular signatures for breast and ovarian cancers, including particular sub-types of these diseases. This laboratory is also focused on the identification of proteins with expression restricted to the surface of cancer cells which can be used as novel targets for molecular imaging technologies.

  • Tino Pleiner

    Tino Pleiner

    Assistant Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsThe Pleiner lab combines mechanistic cell biology, structural biochemistry and protein engineering to dissect the pathways and molecular machines that mature human membrane proteins to a fully functional state. We also develop alpaca-derived and synthetic nanobodies as tools to modulate intracellular pathways that globally regulate protein homeostasis in health and disease.

  • Sylvia K. Plevritis, PhD

    Sylvia K. Plevritis, PhD

    William M. Hume Professor in the School of Medicine and Professor of Radiology (Integrative Biomedical Imaging Informatics at Stanford)

    Current Research and Scholarly InterestsMy research program focuses on computational modeling of cancer biology and cancer outcomes. My laboratory develops stochastic models of the natural history of cancer based on clinical research data. We estimate population-level outcomes under differing screening and treatment interventions. We also analyze genomic and proteomic cancer data in order to identify molecular networks that are perturbed in cancer initiation and progression and relate these perturbations to patient outcomes.

  • Jim Plummer

    Jim Plummer

    John M. Fluke Professor of Electrical Engineering and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsGenerally studies the governing physics and fabrication technology of silicon integrated circuits, including the scaling limits of silicon technology, and the application of silicon technology outside traditional integrated circuits, including power switching devices such as IGBTs. Process simulation tools like SUPREM for simulating fabrication. Recent work has focused on wide bandgap semiconductor materials, particularly SiC and GaN, for power control devices.

  • Kilian M Pohl

    Kilian M Pohl

    Professor (Research) of Psychiatry and Behavioral Sciences (Major Labs and Incubator) and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsThe foundation of the laboratory of Associate Professor Kilian M. Pohl, PhD, is computational science aimed at identifying biomedical phenotypes improving the mechanistic understanding, diagnosis, and treatment of neuropsychiatric disorders. The biomedical phenotypes are discovered by unbiased, machine learning-based searches across biological, neuroimaging, and neuropsychological data. This data-driven discovery currently supports the adolescent brain research of the NIH-funded National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) and the Adolescent Brain Cognitive Development (ABCD), the largest long-term study of brain development and child health in the US. The laboratory also investigates brain patterns specific to alcohol use disorder and the human immunodeficiency virus (HIV) across the adult age range, and have advanced the understanding of a variety of brain diseases including schizophrenia, Alzheimer’s disease, glioma, and aging.

  • Mary Polan

    Mary Polan

    Katharine Dexter McCormick and Stanley McCormick Memorial Professor in the School of Medicine, Emerita

    Current Research and Scholarly InterestsDr. Polan's research has centered around ovarian function during both the follicular and luteal phases. Studies of steroidogenesis, LH receptor synthesis, and the involvement of the plasminogen activator system in ovarian events have been performed.

  • Russell Poldrack

    Russell Poldrack

    Albert Ray Lang Professor of Psychology

    Current Research and Scholarly InterestsOur lab uses the tools of cognitive neuroscience to understand how decision making, executive control, and learning and memory are implemented in the human brain. We also develop neuroinformatics tools and resources to help researchers make better sense of data.

  • Jonathan Pollack

    Jonathan Pollack

    Professor of Pathology

    Current Research and Scholarly InterestsResearch in the Pollack lab centers on translational genomics, with a focus on human cancer. The lab employs next-generation sequencing, single-cell genomics, genome editing, and cell/tissue-based modeling to uncover disease mechanisms, biomarkers and therapeutic targets. Current areas of emphasis include diseases of the prostate (prostate cancer and benign prostatic hyperplasia), as well as odontogenic neoplasms.

  • Ada Poon

    Ada Poon

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsOur research focuses on providing theoretical foundations and engineering platforms for realizing electronics that seamlessly integrate with the body. Such systems will allow precise recording or modulation of physiological activity, for advancing basic scientific discovery and for restoring or augmenting biological functions for clinical applications.

  • Eric Pop

    Eric Pop

    Pease-Ye Professor, Professor of Electrical Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering and of Applied Physics

    Current Research and Scholarly InterestsThe Pop Lab explores problems at the intersection of nanoelectronics and nanoscale energy conversion. These include fundamental limits of current and heat flow, energy-efficient transistors and memory, and energy harvesting via thermoelectrics. The Pop Lab also works with novel nanomaterials like carbon nanotubes, graphene, BN, MoS2, and their device applications, through an approach that is experimental, computational and highly collaborative.

  • Richard Popp

    Richard Popp

    Professor of Medicine (Cardiovascular Medicine), Emeritus

    Current Research and Scholarly InterestsAcademic-Industrial relations; Ethics of invention.

  • Matthew Porteus

    Matthew Porteus

    Sutardja Chuk Professor of Definitive and Curative Medicine

    BioDr. Porteus was raised in California and was a local graduate of Gunn High School before completing A.B. degree in “History and Science” at Harvard University where he graduated Magna Cum Laude and wrote an thesis entitled “Safe or Dangerous Chimeras: The recombinant DNA controversy as a conflict between differing socially constructed interpretations of recombinant DNA technology.” He then returned to the area and completed his combined MD, PhD at Stanford Medical School with his PhD focused on understanding the molecular basis of mammalian forebrain development with his PhD thesis entitled “Isolation and Characterization of TES-1/DLX-2: A Novel Homeobox Gene Expressed During Mammalian Forebrain Development.” After completion of his dual degree program, he was an intern and resident in Pediatrics at Boston Children’s Hospital and then completed his Pediatric Hematology/Oncology fellowship in the combined Boston Chidlren’s Hospital/Dana Farber Cancer Institute program. For his fellowship and post-doctoral research he worked with Dr. David Baltimore at MIT and CalTech where he began his studies in developing homologous recombination as a strategy to correct disease causing mutations in stem cells as definitive and curative therapy for children with genetic diseases of the blood, particularly sickle cell disease. Following his training with Dr. Baltimore, he took an independent faculty position at UT Southwestern in the Departments of Pediatrics and Biochemistry before again returning to Stanford in 2010 as an Associate Professor. During this time his work has been the first to demonstrate that gene correction could be achieved in human cells at frequencies that were high enough to potentially cure patients and is considered one of the pioneers and founders of the field of genome editing—a field that now encompasses thousands of labs and several new companies throughout the world. His research program continues to focus on developing genome editing by homologous recombination as curative therapy for children with genetic diseases but also has interests in the clonal dynamics of heterogeneous populations and the use of genome editing to better understand diseases that affect children including infant leukemias and genetic diseases that affect the muscle. Clinically, Dr. Porteus attends at the Lucille Packard Children’s Hospital where he takes care of pediatric patients undergoing hematopoietic stem cell transplantation.

  • Ellen Porzig

    Ellen Porzig

    Professor (Teaching) of Developmental Biology, Emerita

    Current Research and Scholarly InterestsEarly Human Developmental Biology:
    From Egg to Embryo
    Organogenesis: Pattern formation
    Sex Determination in Embryogenesis

  • Kathleen Poston, MD, MS

    Kathleen Poston, MD, MS

    Edward F. and Irene Thiele Pimley Professor of Neurology and the Neurological Sciences and Professor, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsMy research addresses one of the most devastating and poorly treated symptoms that can develop in people with Parkinson's disease - Dementia. We use multi-modal neuroimaging along with genetic and biological markers to understand the different underlying causes of dementia and to understand why dementia develops more quickly in some patients, but not others.

  • Manu Prakash

    Manu Prakash

    Associate Professor of Bioengineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Oceans and of Biology

    BioWe use interdisciplinary approaches including theory and experiments to understand how computation is embodied in biological matter. Examples include cognition in single cell protists and morphological computing in animals with no neurons and origins of complex behavior in multi-cellular systems. Broadly, we invent new tools for studying non-model organisms with significant focus on life in the ocean - addressing fundamental questions such as how do cells sense pressure or gravity? Finally, we are dedicated towards inventing and distributing “frugal science” tools to democratize access to science (previous inventions used worldwide: Foldscope, Abuzz), diagnostics of deadly diseases like malaria and convening global citizen science communities to tackle planetary scale environmental challenges such as mosquito surveillance or plankton surveillance by citizen sailors mapping the ocean in the age of Anthropocene.

  • Guillem Pratx

    Guillem Pratx

    Associate Professor of Radiation Oncology (Radiation Physics)

    Current Research and Scholarly InterestsThe Physical Oncology Lab is interested in making a lasting impact on translational cancer research by building novel physical tools and methods.