Bio-X
Showing 1-6 of 6 Results
-
Lei (Stanley) Qi
Associate Professor of Bioengineering
BioDr. Lei (Stanley) Qi is an Associate Professor of Bioengineering, an Institute Scholar at Sarafan ChEM-H, and a Chan Zuckerberg Biohub Investigator. He earned B.S. in Physics and Mathematics from Tsinghua University and Ph.D. in Bioengineering from UC Berkeley. Before joining the Stanford faculty in 2014, Dr. Qi was a Systems Biology Faculty Fellow at UCSF.
Dr. Qi is a pioneer in CRISPR technology development, particularly in the areas of epigenetic regulation and chromatin DNA imaging. He invented the first nuclease-deactivated Cas9 (dCas9) system for targeted gene regulation in living cells. His lab has since expanded the CRISPR-dCas toolbox, including new tools and variants like hyperCas12a and the compact CasMINI. These new technologies have enabled CRISPRi and CRISPRa for targeted gene repression and activation in various cells and organisms, large-scale genetic perturbation screens, and precision epigenetic editing in primary cells. His lab also developed technologies for dynamic chromatin DNA imaging in live cells (LiveFISH), 3D genome structure manipulation (CRISPR-GO), and multiplexed transcriptome engineering (MEGA).
Dr. Qi has used these new technologies to make key discoveries in epigenetics, such as the synergistic functions of enhancer elements in cancer gene regulation, metabolic pathways in T cell dysfunction, and novel antivirals against RNA viruses. Dr. Qi’s current research explores synthetic biology, epigenetics, immune cell engineering, and innovative targets for gene therapy in immunology and neurobiology. -
Jian Qin
Assistant Professor of Chemical Engineering
BioJian Qin is an Assistant Professor in the Department of Chemical Engineering at the Stanford University. His research focuses on development of microscopic understanding of structural and physical properties of soft matters by using a combination of analytical theory, scaling argument, numerical computation, and molecular simulation. He worked as a postdoctoral scholar with Juan de Pablo in the Institute for Molecular Engineering at the University of Chicago and with Scott Milner in the Department of Chemical Engineering at the Pennsylvania State University. He received his Ph.D. in the Department of Chemical Engineering and Materials Science at the University of Minnesota under the supervision of David Morse and Frank Bates. His research covers self-assembly of multi-component polymeric systems, molecular origin of entanglement and polymer melt rheology, coacervation of polyelectrolytes, Coulomb interactions in dielectrically heterogeneous electrolytes, and surface charge polarizations in particulate aggregates in the absence or presence of flow.
-
Xiaojie Qiu
Assistant Professor of Genetics
Current Research and Scholarly InterestsAt the Qiu Lab, our mission is to unravel and predict the intricacies of gene regulatory networks and cell-cell interactions pivotal in mammalian cell fate transitions over time and space, with a special emphasis on heart evolution, development, and disease. We are a dynamic and interdisciplinary team, harnessing the latest advancements in machine learning as well as single-cell and spatial genomics by integrating the predictive power of systems biology with the scalability of machine learning,
-
Stephen Quake
Lee Otterson Professor in the School of Engineering and Professor of Bioengineering, of Applied Physics and, by courtesy, of Physics
Current Research and Scholarly InterestsSingle molecule biophysics, precision force measurement, micro and nano fabrication with soft materials, integrated microfluidics and large scale biological automation.
-
Thomas Quertermous, MD
William G. Irwin Professor of Cardiovascular Medicine
Current Research and Scholarly InterestsUnderstanding genetic basis of cardiovascular function and disease.
-
Sean Quirin
Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical & Translational Neurosciences Incubator)
BioDr. Quirin's laboratory develops minimally invasive methods to explore the causal role individual neurons play in the emergence of behavior. To this end, the lab's strength is the development of techniques which manipulate light to both detect and restoratively modulate brain activity down to the single-neuron scale. His lab continues to innovate with new tools which map these functional relationships onto the molecular and anatomical architecture of the brain. Utilizing these techniques, the lab aims to characterize how ensembles of neurons coordinate to encode and communicate information throughout the brain for sensing and behavior.