Sarafan ChEM-H
Showing 1-10 of 17 Results
-
Lynette Renae Haberman
Academic and Student Services Coordinator, Sarafan ChEM-H
Current Role at StanfordAcademic and Student Services Coordinator
-
Pehr Harbury
Associate Professor of Biochemistry
Current Research and Scholarly InterestsScientific breakthroughs often come on the heels of technological advances; advances that expose hidden truths of nature, and provide tools for engineering the world around us. Examples include the telescope (heliocentrism), the Michelson interferometer (relativity) and recombinant DNA (molecular evolution). Our lab explores innovative experimental approaches to problems in molecular biochemistry, focusing on technologies with the potential for broad impact.
-
Sarah Heilshorn
Director, Geballe Laboratory for Advanced Materials (GLAM), Professor of Materials Science and Engineering and, by courtesy, of Bioengineering and of Chemical Engineering
Current Research and Scholarly InterestsProtein engineering
Tissue engineering
Regenerative medicine
Biomaterials -
Daniel Herschlag
Professor of Biochemistry and, by courtesy, of Chemical Engineering
On Leave from 06/01/2023 To 04/30/2024Current Research and Scholarly InterestsOur research is aimed at understanding the chemical and physical behavior underlying biological macromolecules and systems, as these behaviors define the capabilities and limitations of biology. Toward this end we study folding and catalysis by RNA, as well as catalysis by protein enzymes.
-
Keith Hodgson
David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry and Professor of Photon Science at SLAC
BioCombining inorganic, biophysical and structural chemistry, Professor Keith Hodgson investigates how structure at molecular and macromolecular levels relates to function. Studies in the Hodgson lab have pioneered the use of synchrotron x-radiation to probe the electronic and structural environment of biomolecules. Recent efforts focus on the applications of x-ray diffraction, scattering and absorption spectroscopy to examine metalloproteins that are important in Earth’s biosphere, such as those that convert nitrogen to ammonia or methane to methanol.
Keith O. Hodgson was born in Virginia in 1947. He studied chemistry at the University of Virginia (B.S. 1969) and University of California, Berkeley (Ph.D. 1972), with a postdoctoral year at the ETH in Zurich. He joined the Stanford Chemistry Department faculty in 1973, starting up a program of fundamental research into the use of x-rays to study chemical and biological structure that made use of the unique capabilities of the Stanford Synchrotron Radiation Lightsource (SSRL). His lab carried out pioneering x-ray absorption and x-ray crystallographic studies of proteins, laying the foundation for a new field now in broad use worldwide. In the early eighties, he began development of one of the world's first synchrotron-based structural molecular biology research and user programs, centered at SSRL. He served as SSRL Director from 1998 to 2005, and SLAC National Accelerator Laboratory (SLAC) Deputy Director (2005-2007) and Associate Laboratory Director for Photon Science (2007-2011).
Today the Hodgson research group investigates how molecular structure at different organizational levels relates to biological and chemical function, using a variety of x-ray absorption, diffraction and scattering techniques. Typical of these molecular structural studies are investigations of metal ions as active sites of biomolecules. His research group develops and utilizes techniques such as x-ray absorption and emission spectroscopy (XAS and XES) to study the electronic and metrical details of a given metal ion in the biomolecule under a variety of natural conditions.
A major area of focus over many years, the active site of the enzyme nitrogenase is responsible for conversion of atmospheric di-nitrogen to ammonia. Using XAS studies at the S, Fe and Mo edge, the Hodgson group has worked to understand the electronic structure as a function of redox in this cluster. They have developed new methods to study long distances in the cluster within and outside the protein. Studies are ongoing to learn how this cluster functions during catalysis and interacts with substrates and inhibitors. Other components of the protein are also under active study.
Additional projects include the study of iron in dioxygen activation and oxidation within the binuclear iron-containing enzyme methane monooxygenase and in cytochrome oxidase. Lab members are also investigating the role of copper in electron transport and in dioxygen activation. Other studies include the electronic structure of iron-sulfur clusters in models and enzymes.
The research group is also focusing on using the next generation of x-ray light sources, the free electron laser. Such a light source, called the LCLS, is also located at SLAC. They are also developing new approaches using x-ray free electron laser radiation to image noncrystalline biomolecules and study chemical reactivity on ultrafast time scales. -
Marie Hollenhorst, MD, PhD
Basic Life Science Research Associate, Sarafan ChEM-H
BioDr. Hollenhorst is a physician and scientist with expertise in non-malignant hematology, transfusion medicine, and chemical biology. Dr. Hollenhorst values the one-on-one relationships that she forms with her patients, and strives to deliver the highest quality of care for individuals with blood diseases. Her experience caring for patients drives her to ask scientific questions in the laboratory, where she aims to bring a chemical approach to the study of non-malignant blood disease.
Dr. Hollenhorst pursued combined MD and PhD training at Harvard University, where she received a PhD in Chemical Biology under the mentorship of Professor Christopher T Walsh. She subsequently completed a residency in Internal Medicine at Brigham and Women's Hospital, a fellowship in Transfusion Medicine at Harvard Medical School, and a fellowship in Hematology at Stanford.
Dr. Hollenhorst has an interest in the biology of platelets, which are cellular fragments that help the blood to maintain a healthy balance between bleeding and clotting. Working in the laboratory of Professor Carolyn Bertozzi of Stanford Chemistry, Dr. Hollenhorst is studying sugar molecules found on the surface of platelets that are important in controlling their function and lifespan.
Dr. Hollenhorst's research is supported by an NIH K99 Career Pathway to Independence in Blood Science Award for Physician-Scientists, a Stanford Chemistry, Engineering & Medicine for Human Health Physician-Scientist Fellowship, and a National Blood Foundation Early-Career Scientific Research Grant.